Invariants
| Base field: | $\F_{71}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 + 6 x + 71 x^{2}$ | 
| Frobenius angles: | $\pm0.615871442562$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-62}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $8$ | 
| Isomorphism classes: | 8 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $78$ | $5148$ | $356850$ | $25410528$ | $1804311678$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $5148$ | $356850$ | $25410528$ | $1804311678$ | $128099871900$ | $9095116785378$ | $645753580737408$ | $45848500660983150$ | $3255243547840769628$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+27 x+27$
- $y^2=x^3+41 x+41$
- $y^2=x^3+14 x+27$
- $y^2=x^3+50 x+66$
- $y^2=x^3+48 x+48$
- $y^2=x^3+29 x+61$
- $y^2=x^3+20 x+20$
- $y^2=x^3+20 x+69$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-62}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.71.ag | $2$ | (not in LMFDB) | 
