Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 6 x + 53 x^{2}$ |
| Frobenius angles: | $\pm0.364801829573$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-11}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $48$ | $2880$ | $149616$ | $7891200$ | $418160688$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $2880$ | $149616$ | $7891200$ | $418160688$ | $22164114240$ | $1174711503216$ | $62259705676800$ | $3299763664135728$ | $174887469990446400$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+21 x+42$
- $y^2=x^3+38 x+23$
- $y^2=x^3+48 x+43$
- $y^2=x^3+42 x+42$
- $y^2=x^3+x+2$
- $y^2=x^3+44 x+44$
- $y^2=x^3+52 x+51$
- $y^2=x^3+41 x+41$
- $y^2=x^3+24 x+48$
- $y^2=x^3+22 x+22$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.53.g | $2$ | (not in LMFDB) |