Properties

Label 1.79.a
Base field $\F_{79}$
Dimension $1$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $1$
L-polynomial:  $1 + 79 x^{2}$
Frobenius angles:  $\pm0.5$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-79}) \)
Galois group:  $C_2$
Jacobians:  $10$
Isomorphism classes:  10

This isogeny class is simple and geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $80$ $6400$ $493040$ $38937600$ $3077056400$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $80$ $6400$ $493040$ $38937600$ $3077056400$ $243088441600$ $19203908986160$ $1517108732006400$ $119851595982618320$ $9468276088780960000$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79^{2}}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-79}) \).
Endomorphism algebra over $\overline{\F}_{79}$
The base change of $A$ to $\F_{79^{2}}$ is the simple isogeny class 1.6241.gc and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $79$ and $\infty$.

Base change

This is a primitive isogeny class.

Twists

This isogeny class has no twists.