Invariants
Base field: | $\F_{97}$ |
Dimension: | $1$ |
L-polynomial: | $1 + 6 x + 97 x^{2}$ |
Frobenius angles: | $\pm0.598524067447$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-22}) \) |
Galois group: | $C_2$ |
Jacobians: | $6$ |
Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $1$ |
Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $104$ | $9568$ | $911144$ | $88523136$ | $8587525544$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $104$ | $9568$ | $911144$ | $88523136$ | $8587525544$ | $832971489376$ | $80798269598696$ | $7837433733662208$ | $760231059262157288$ | $73742412672336604768$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+85 x+85$
- $y^2=x^3+78 x+2$
- $y^2=x^3+90 x+90$
- $y^2=x^3+73 x+73$
- $y^2=x^3+19 x+19$
- $y^2=x^3+20 x+20$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-22}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
1.97.ag | $2$ | (not in LMFDB) |