Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 6 x + 41 x^{2}$ |
| Frobenius angles: | $\pm0.344786929280$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $7$ |
| Isomorphism classes: | 7 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $36$ | $1728$ | $69444$ | $2827008$ | $115842276$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $1728$ | $69444$ | $2827008$ | $115842276$ | $4749969600$ | $194754036996$ | $7984929328128$ | $327381968700324$ | $13422659347931328$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 7 curves (of which 0 are hyperelliptic):
- $y^2=x^3+2 x+2$
- $y^2=x^3+27 x+27$
- $y^2=x^3+8 x+24$
- $y^2=x^3+10 x+30$
- $y^2=x^3+27 x+40$
- $y^2=x^3+21 x+22$
- $y^2=x^3+26 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.41.g | $2$ | (not in LMFDB) |