Invariants
| Base field: | $\F_{89}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 + 4 x + 89 x^{2}$ | 
| Frobenius angles: | $\pm0.567997546099$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-85}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $4$ | 
| Isomorphism classes: | 4 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $94$ | $8084$ | $703966$ | $62731840$ | $5584190414$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $94$ | $8084$ | $703966$ | $62731840$ | $5584190414$ | $496981692884$ | $44231321632046$ | $3936588822984960$ | $350356404818803774$ | $31181719923982733204$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+58 x+85$
- $y^2=x^3+8 x+8$
- $y^2=x^3+9 x+9$
- $y^2=x^3+34 x+13$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-85}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.89.ae | $2$ | (not in LMFDB) | 
