Invariants
| Base field: | $\F_{67}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 + 2 x + 67 x^{2}$ | 
| Frobenius angles: | $\pm0.538985133153$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-66}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $8$ | 
| Isomorphism classes: | 8 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $70$ | $4620$ | $300370$ | $20143200$ | $1350167350$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $70$ | $4620$ | $300370$ | $20143200$ | $1350167350$ | $90458828460$ | $6060707882530$ | $406067655100800$ | $27206534690633830$ | $1822837805467625100$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+54 x+41$
 - $y^2=x^3+6 x+12$
 - $y^2=x^3+34 x+34$
 - $y^2=x^3+57 x+57$
 - $y^2=x^3+27 x+27$
 - $y^2=x^3+12 x+24$
 - $y^2=x^3+9 x+18$
 - $y^2=x^3+50 x+50$
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-66}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.67.ac | $2$ | (not in LMFDB) |