Invariants
| Base field: | $\F_{61}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 + 14 x + 61 x^{2}$ | 
| Frobenius angles: | $\pm0.853724980602$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-3}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $4$ | 
| Isomorphism classes: | 4 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $76$ | $3648$ | $227164$ | $13847808$ | $844557676$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $3648$ | $227164$ | $13847808$ | $844557676$ | $51520795200$ | $3142739300476$ | $191707336823808$ | $11694145974931084$ | $713342911860107328$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+8$
- $y^2=x^3+41 x+41$
- $y^2=x^3+20 x+40$
- $y^2=x^3+28 x+56$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). | 
Base change
This is a primitive isogeny class.
