Invariants
| Base field: | $\F_{83}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 - 4 x + 83 x^{2}$ | 
| Frobenius angles: | $\pm0.429548098763$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-79}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $10$ | 
| Isomorphism classes: | 10 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $80$ | $7040$ | $572720$ | $47449600$ | $3938928400$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $7040$ | $572720$ | $47449600$ | $3938928400$ | $326940648320$ | $27136061405680$ | $2252292250982400$ | $186940254478381520$ | $15516041182485219200$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+7 x+14$
 - $y^2=x^3+51 x+51$
 - $y^2=x^3+59 x+59$
 - $y^2=x^3+38 x+38$
 - $y^2=x^3+34 x+68$
 - $y^2=x^3+53 x+23$
 - $y^2=x^3+62 x+62$
 - $y^2=x^3+72 x+61$
 - $y^2=x^3+55 x+27$
 - $y^2=x^3+24 x+24$
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-79}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.83.e | $2$ | (not in LMFDB) |