⌂
→
Knowledge
→
nf
Citation
·
Feedback
·
Hide Menu
Knowledge database
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
Search
Regex:
Filter
Category:
af(4)
ag(57)
alg(7)
artin(23)
av(42)
belyi(18)
character(43)
clusterpicture(1)
cmf(89)
combin(1)
content(4)
crystals(3)
curve(18)
doc(22)
dq(33)
ec(118)
field(1)
g2c(55)
gg(24)
gl2(15)
group(151)
gsp4(1)
hecke_algebra(1)
hgm(18)
hmsurface(12)
intro(5)
lattice(27)
lf(47)
lfunction(71)
lmfdb(1)
lucant(1)
mf(133)
modcurve(51)
modlgal(25)
modlgalrep(2)
mot(2)
motives(1)
nf(94)
portrait(4)
rcs(132)
repn(2)
ring(22)
sage(3)
sh(2)
specialfunction(3)
st_group(34)
stats(3)
test(3)
users(5)
varieties(1)
zeros(1)
clear category filter
Quality:
Reviewed
:
Beta
:
Type:
Normal
:
Top
:
Bottom
:
Column
:
Search
More
Recently modified knowls
A
nf.abelian
Abelian number field
nf.abs_discriminant
Absolute discriminant of a number field
nf.absolute_value
Absolute value of a field
nf.algebraic_closure
Algebraic closure of a field
nf.class_number_formula
Analytic class number formula
nf.arithmetically_equivalent
Arithmetically equivalent fields
nf.assuming_grh
Assuming GRH
C
nf.polredabs
Canonical defining polynomial for number fields
nf.class_number
Class number of a number field
nf.cm_field
CM number field
nf.complex_embedding
Complex embedding
nf.conductor
Conductor of an abelian number field
D
nf.field.data
Data for a global number field
nf.defining_polynomial
Defining Polynomial of a Number Field
nf.degree
Degree of a number field
nf.dirichlet_group
Dirichlet group of an Abelian number field
nf.discriminant
Discriminant of a number field
nf.poly_discriminant
Discriminant of polynomial
nf.discriminant_root_field
Discriminant root field
E
nf.embedding
Embedding of a number field
nf.extent
Extent of global number field data
F
nf.search_input
Find a number field
nf.frobenius_cycle_types
Frobenius cycle types
nf.fundamental_units
Fundamental units of a number field
G
nf.galois_closure
Galois closure of an extension
nf.galois_group
Galois group
nf.galois_search
Galois group
nf.galois_group.data
Galois group information
nf.galois_group.name
Galois group of a number field -- naming convention
nf.galois_group.gmodule
Galois module information
nf.galois_group.gmodule_v4_type_i_i
Galois module structure of Type I (i) for units in biquadratic number fields
nf.galois_group.gmodule_v4_type_i_ii
Galois module structure of Type I (ii) for units in biquadratic number fields
nf.galois_group.gmodule_v4_type_i_iii
Galois module structure of Type I (iii) for units in biquadratic number fields
nf.galois_group.gmodule_v4_type_ii_i
Galois module structure of Type II (i) for units in biquadratic number fields
nf.galois_group.gmodule_v4_type_ii_ii
Galois module structure of Type II (ii) for units in biquadratic number fields
nf.galois_group.gmodule_v4_type_iii
Galois module structure of Type III for units in biquadratic number fields
nf.galois_group.gmodule_v4_type_iv
Galois module structure of Type IV for units in biquadratic number fields
nf.field_generator
Generator of a number field
nf.generator
Generator of a number field
H
nf.ideal.label.hmf
Hilbert modular form convention for the label of a number field ideal
I
nf.ideal_class_group
Ideal class group of a number field
nf.ideal_labels
Ideal labels
nf.zk_index
Index of a number field
nf.index
Index of an order
nf.inessential_prime
Inessential prime
nf.integral_basis
Integral basis of a number field
nf.integral
Integral elements
nf.intermediate_fields
Intermediate fields
nf.is_galois
Is a Galois extension
nf.isogeny_primes
Isogeny primes of elliptic curves
L
nf.local_algebra
Local algebra
M
nf.minimal_polynomial
Minimal polynomial
nf.minimal_sibling
Minimal sibling
nf.monogenic
Monogenic field
nf.monomial_order
Monomial order
nf.multiplicative_gal_module
Multiplicative Galois Module Structure
N
nf.narrow_class_group
Narrow class group
nf.narrow_class_number
Narrow class number
nf.defining_polynomial.normalization
Normalization of defining polynomials for number fields
nf
Number field
nf.field.link
Number field defined by polynomial
nf.invariants
Number field invariants
nf.label
Number field label
nf.nickname
Number field nicknames
nf.field.missing
Number field not in the database
nf.elkies
Number fields contributed by Noam Elkies
O
nf.order
Order
P
nf.place
Place of a number field
nf.prime
Prime of a number field
nf.primitive_element
Primitive element
R
nf.ramified_primes
Ramified (rational) prime of a number field
nf.rank
Rank of a number field
nf.real_embedding
Real embedding
nf.reflex_field
Reflex field
nf.regulator
Regulator of a number field
nf.ring_of_integers
Ring of integers of a number field
nf.root_discriminant
Root discriminant of a number field
S
nf.padic_completion.search
Searching $p$-adic completions of a number field
nf.separable_algebra
Separable algebra
nf.separable
Separable extension
nf.serre_odlyzko_bound
Serre Odlyzko bound
nf.sibling
Sibling fields and algebras
nf.signature
Signature of a number field
nf.stem_field
Stem field for a Galois extension
T
nf.totally_imaginary
Totally imaginary
nf.totally_positive
Totally positive
nf.totally_real
Totally real
nf.sextic_twin
Twin sextic algebra
U
nf.unit_group
Unit group of a number field
nf.torsion
Unit group torsion
nf.unramified_prime
Unramified (rational) prime of a number field
W
nf.weil_height
Weil height
nf.weil_polynomial
Weil polynomial
?
nf.padic_completion
$p$-adic completion of a number field