The discriminant of a number field $K$ is the square of the determinant of the matrix \[ \left( \begin{array}{ccc} \sigma_1(\beta_1) & \cdots & \sigma_1(\beta_n) \\ \vdots & & \vdots \\ \sigma_n(\beta_1) & \cdots & \sigma_n(\beta_n) \\ \end{array} \right) \] where $\sigma_1,..., \sigma_n$ are the embeddings of $K$ into the complex numbers $\mathbb{C}$, and $\{\beta_1, \ldots, \beta_n\}$ is an integral basis for the ring of integers of $K$.
The discriminant of $K$ is a non-zero integer divisible exactly by the primes which ramify in $K$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-07 20:21:26
Referred to by:
History:
(expand/hide all)
- cmf.self_twist
- dq.mf.bianchi.extent
- ec.bsdconjecture
- hgm.local_discriminant
- mf.ellitpic.self_twist
- nf.3.1.431.1.top
- nf.abs_discriminant
- nf.arithmetically_equivalent
- nf.class_number_formula
- nf.invariants
- nf.label
- nf.minimal_sibling
- nf.poly_discriminant
- nf.ramified_primes
- nf.root_discriminant
- nf.unramified_prime
- rcs.cande.ec
- rcs.source.ec
- lmfdb/hilbert_modular_forms/hilbert_modular_form.py (line 141)
- lmfdb/hilbert_modular_forms/hilbert_modular_form.py (line 650)
- lmfdb/number_fields/number_field.py (line 830)
- lmfdb/number_fields/number_field.py (line 1149)
- lmfdb/number_fields/templates/nf-index.html (line 15)
- lmfdb/number_fields/templates/nf-show-field.html (line 29)
- 2018-07-07 20:21:26 by Alina Bucur (Reviewed)