A number field is a finite degree field extension of the field $\Q$ of rational numbers. In LMFDB, number fields are identified by a label.
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-07 19:29:57
Referred to by:
History:
(expand/hide all)
- ag.canonical_height
- ag.cm_field
- ag.regulator
- artin.number_field
- av.theta_divisor
- character.hecke
- cmf.projective_field
- ec.additive_reduction
- ec.bad_reduction
- ec.canonical_height
- ec.complex_multiplication
- ec.conductor
- ec.conductor_label
- ec.galois_rep_image
- ec.global_minimal_model
- ec.good_ordinary_reduction
- ec.good_reduction
- ec.good_supersingular_reduction
- ec.invariants
- ec.isogeny
- ec.kodaira_symbol
- ec.local_data
- ec.local_minimal_discriminant
- ec.local_minimal_model
- ec.local_root_number
- ec.minimal_discriminant
- ec.mordell_weil_group
- ec.mordell_weil_theorem
- ec.multiplicative_reduction
- ec.nonsplit_multiplicative_reduction
- ec.obstruction_class
- ec.q.regulator
- ec.q.torsion_growth
- ec.q_curve
- ec.rank
- ec.reduction_type
- ec.regulator
- ec.semi_global_minimal_model
- ec.split_multiplicative_reduction
- ec.tamagawa_number
- g2c.known_rational_points
- g2c.locally_solvable
- g2c.num_rat_pts
- g2c.torsion
- g2c.torsion_order
- lfunction.coefficient_field
- lfunction.underlying_object
- mf.base_change
- mf.cm
- mf.gl2.history.hecke
- mf.gl2.history.varieties
- mf.hilbert
- mf.hilbert.level_norm
- nf.14.2.20325604337285010030592.1.bottom
- nf.3.1.503.1.bottom
- nf.abelian
- nf.abs_discriminant
- nf.algebraic_closure
- nf.arithmetically_equivalent
- nf.class_number
- nf.cm_field
- nf.conductor
- nf.defining_polynomial
- nf.degree
- nf.discriminant
- nf.field_generator
- nf.fundamental_units
- nf.generator
- nf.ideal_class_group
- nf.ideal_labels
- nf.index
- nf.integral
- nf.integral_basis
- nf.invariants
- nf.local_algebra
- nf.minimal_polynomial
- nf.monomial_order
- nf.narrow_class_group
- nf.narrow_class_number
- nf.order
- nf.prime
- nf.primitive_element
- nf.rank
- nf.regulator
- nf.ring_of_integers
- nf.root_discriminant
- nf.serre_odlyzko_bound
- nf.signature
- nf.torsion
- nf.totally_imaginary
- nf.totally_positive
- nf.totally_real
- nf.unit_group
- nf.unramified_prime
- nf.weil_height
- ring.dedekind_domain
- lmfdb/artin_representations/math_classes.py (lines 539-541)
- lmfdb/bianchi_modular_forms/bianchi_modular_form.py (line 263)
- lmfdb/bianchi_modular_forms/templates/bmf-browse.html (line 13)
- lmfdb/bianchi_modular_forms/templates/bmf-browse.html (line 21)
- lmfdb/bianchi_modular_forms/templates/bmf-browse.html (line 63)
- lmfdb/bianchi_modular_forms/templates/bmf-search_results.html (line 10)
- lmfdb/characters/web_character.py (line 539)
- lmfdb/characters/web_character.py (line 588)
- lmfdb/characters/web_character.py (line 673)
- lmfdb/characters/web_character.py (line 1106)
- lmfdb/characters/web_character.py (line 1387)
- lmfdb/ecnf/ecnf_stats.py (lines 32-33)
- lmfdb/ecnf/main.py (line 716)
- lmfdb/ecnf/templates/ecnf-index.html (line 10)
- lmfdb/ecnf/templates/ecnf-index.html (line 31)
- lmfdb/ecnf/templates/ecnf-index.html (line 65)
- lmfdb/ecnf/templates/ecnf-search-results.html (line 19)
- lmfdb/ecnf/templates/ecnf-search-results.html (line 134)
- lmfdb/half_integral_weight_forms/half_integral_form.py (line 106)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form_all.html (line 11)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form_all.html (lines 68-71)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form_search.html (line 12)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form_search.html (line 92)
- lmfdb/lfunctions/Lfunction.py (line 1623)
- lmfdb/number_fields/__init__.py (line 12)
- lmfdb/number_fields/number_field.py (line 90)
- lmfdb/number_fields/number_field.py (line 861)
- lmfdb/number_fields/number_field.py (line 926)
- lmfdb/number_fields/templates/nf-index.html (line 9)
- 2018-07-07 19:29:57 by Alina Bucur (Reviewed)