Each Galois group is identified by its degree and an index called its T-number. This specifies both the abstract group and a faithful transitive permutation of that group. One may search for a group in the form $n$T$t$ where $n$ is the degree and $t$ is the T-number. The search results will then only show fields where the Galois group matches the requested permutation representation.
For familiar groups one can use short names of the form Cj
Dj
, Sj
, Aj
($1\leq j\leq 47$), for cyclic, dihedral, symmetric, and alternating groups, or from the table below.
An abstract group may have more than one
representation as a Galois group. Correspondingly, the familiar
symbol for a group may represent several
Galois groups. When searching for fields using the name of an abstract group, e.g., S3
, the results may contain fields with different degrees and permutation representations.
Alias | Group | \(n\)T\(t\) |
---|---|---|
V4 | $C_2^2$ | 4T2 |
C2XC2 | $C_2^2$ | 4T2 |
F5 | $F_5$ | 5T3, 10T4, 20T5 |
PSL(2,5) | $A_5$ | 5T4, 6T12, 10T7, 12T33, 15T5, 20T15, 30T9 |
PGL(2,5) | $S_5$ | 5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62 |
S3XC3 | $S_3\times C_3$ | 6T5, 9T4, 18T3 |
S3XS3 | $S_3^2$ | 6T9, 9T8, 12T16, 18T9, 18T11, 36T13 |
PSL(2,9) | $A_6$ | 6T15, 10T26, 15T20, 20T89, 30T88, 36T555, 40T304, 45T49 |
F7 | $F_7$ | 7T4, 14T4, 21T4, 42T4 |
GL(3,2) | $\GL(3,2)$ | 7T5, 8T37, 14T10, 21T14, 24T284, 28T32, 42T37, 42T38 |
PSL(2,7) | $\GL(3,2)$ | 7T5, 8T37, 14T10, 21T14, 24T284, 28T32, 42T37, 42T38 |
C4XC2 | $C_4\times C_2$ | 8T2 |
C2XC2XC2 | $C_2^3$ | 8T3 |
Q8 | $Q_8$ | 8T5 |
SL(2,3) | $\SL(2,3)$ | 8T12, 24T7 |
GL(2,3) | $\textrm{GL(2,3)}$ | 8T23, 16T66, 24T22 |
PGL(2,7) | $\PGL(2,7)$ | 8T43, 14T16, 16T713, 21T20, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83 |
C3XC3 | $C_3^2$ | 9T2 |
M9 | $C_3^2:Q_8$ | 9T14, 12T47, 18T35, 24T82, 36T55 |
PSL(2,8) | $\PSL(2,8)$ | 9T27, 28T70, 36T712 |
PGL(2,9) | $\PGL(2,9)$ | 10T30, 12T182, 20T146, 30T171, 36T1254, 40T590, 45T110 |
M10 | $M_{10}$ | 10T31, 12T181, 20T148, 20T150, 30T162, 36T1253, 40T591, 45T109 |
F11 | $F_{11}$ | 11T4, 22T4 |
PSL(2,11) | $\PSL(2,11)$ | 11T5, 12T179 |
M11 | $M_{11}$ | 11T6, 12T272, 22T22 |
C6XC2 | $C_6\times C_2$ | 12T2 |
C3:C4 | $C_3 : C_4$ | 12T5 |
M12 | $M_{12}$ | 12T295 |
F13 | $F_{13}$ | 13T6, 26T8, 39T11 |
PSL(3,3) | $\PSL(3,3)$ | 13T7, 26T39, 39T43 |
PSL(2,13) | $\PSL(2,13)$ | 14T30, 28T120, 42T176 |
PGL(2,13) | $\PGL(2,13)$ | 14T39, 28T201, 42T284 |
Q8XC2 | $Q_8\times C_2$ | 16T7 |
C4:C4 | $C_4:C_4$ | 16T8 |
Q16 | $Q_{16}$ | 16T14 |
F17 | $F_{17}$ | 17T5 |
PSL(2,17) | $\PSL(2,16)$ | 17T6 |
PGL(2,17) | $\PGL(2,17)$ | 18T468, 36T5561 |
C5:C4 | $C_5:C_4$ | 20T2 |
PGL(2,19) | $\PGL(2,19)$ | 20T362, 40T5409 |
M22 | $M_{22}$ | 22T38 |
F23 | $C_{23}:C_{11}$ | 23T3 |
M23 | $M_{23}$ | 23T5 |
Q8XC3 | $C_3\times Q_8$ | 24T4 |
C3:Q8 | $C_3:Q_8$ | 24T5 |
C3:C8 | $C_3:C_8$ | 24T8 |
SL(2,5) | $\SL(2,5)$ | 24T201, 40T60 |
GL(2,5) | $\GL(2,5)$ | 24T1353 |
M24 | $M_{24}$ | 24T24680 |
PSP(4,3) | $\PSp(4,3)$ | 27T993, 36T12781, 40T14344, 40T14345, 45T666 |
C7:C4 | $C_7:C_4$ | 28T3 |
PSU(3,3) | $\PSU(3,3)$ | 28T323, 36T6815 |
Q32 | $Q_{32}$ | 32T51 |
C5:C8 | $C_5:C_8$ | 40T3 |
- Review status: reviewed
- Last edited by John Jones on 2019-12-29 13:06:18
- columns.av_fq_endalg_data.galois_group
- gg.search_input
- lf.inertia_group_search
- lf.wild_inertia_group_search
- nf.galois_group
- nf.galois_search
- lmfdb/abvar/fq/main.py (line 348)
- lmfdb/abvar/fq/search_parsing.py (line 20)
- lmfdb/artin_representations/main.py (line 196)
- lmfdb/artin_representations/main.py (line 543)
- lmfdb/artin_representations/main.py (line 594)
- lmfdb/galois_groups/main.py (line 199)
- lmfdb/galois_groups/main.py (line 478)
- lmfdb/sato_tate_groups/main.py (line 1129)
- lmfdb/utils/search_parsing.py (line 1084)
- lmfdb/utils/search_parsing.py (line 1137)
- 2019-12-29 13:06:18 by John Jones (Reviewed)
- 2019-12-15 22:29:07 by Alex J. Best
- 2019-12-15 22:21:03 by Alex J. Best
- 2019-09-06 18:36:54 by John Jones (Reviewed)
- 2019-04-25 10:10:27 by John Jones (Reviewed)
- 2012-07-01 07:27:56 by John Jones