A generator of a number field \(K\) is an element \(a\in K\) such that \(K=\Q(a)\). The minimal polynomial of a generator is a defining polynomial for \(K\).
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-08 00:20:16
Referred to by:
History:
(expand/hide all)
- nf.defining_polynomial
- nf.primitive_element
- lmfdb/belyi/templates/belyi_galmap.html (lines 24-28)
- lmfdb/belyi/templates/belyi_passport.html (lines 20-24)
- lmfdb/bianchi_modular_forms/templates/bmf-newform.html (line 11)
- lmfdb/bianchi_modular_forms/templates/bmf-space.html (line 11)
- lmfdb/ecnf/templates/ecnf-curve.html (line 35)
- lmfdb/ecnf/templates/ecnf-isoclass.html (line 35)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form.html (line 6)
- lmfdb/number_fields/templates/nf-show-field.html (line 64)
- 2018-07-08 00:20:16 by Alina Bucur (Reviewed)