A global number field $K$ is always of the form $K=\Q(\alpha)$ where $\alpha$ has monic irreducible polynomial $f(x)\in\Q[x]$. The field is totally real if all of the roots of $f(x)$ in $\C$ lie in the real numbers $\R$.
Equivalently, $K$ is totally real if all the embeddings of $K$ into $\C$ have image contained in $\R$.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-08 01:06:39
Referred to by:
History:
(expand/hide all)
- cmf.selfdual
- dq.ecnf.extent
- dq.ecnf.reliability
- mf.hilbert
- mf.hilbert.level_norm
- nf.3.3.49.1.top
- nf.5.5.14641.1.top
- nf.cm_field
- nf.relative_class_number
- rcs.cande.ec
- rcs.rigor.ec
- rcs.source.ec
- st_group.1.2.A.1.1a.bottom
- st_group.definition
- lmfdb/hilbert_modular_forms/hmf_stats.py (line 43)
- lmfdb/hilbert_modular_forms/hmf_stats.py (line 50)
- 2018-07-08 01:06:39 by Alina Bucur (Reviewed)