The minimal polynomial of an element \(a\) in a number field \(K\) is the unique monic polynomial \(f(X)\in\Q[X]\) of minimal degree such that \(f(a)=0\). It is necessarily irreducible over $\Q.$
Authors:
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-08 00:10:27
Referred to by:
History:
(expand/hide all)
- nf.generator
- lmfdb/belyi/templates/belyi_galmap.html (lines 24-28)
- lmfdb/belyi/templates/belyi_passport.html (lines 20-24)
- lmfdb/bianchi_modular_forms/templates/bmf-newform.html (line 13)
- lmfdb/bianchi_modular_forms/templates/bmf-space.html (line 13)
- lmfdb/ecnf/templates/ecnf-curve.html (line 37)
- lmfdb/ecnf/templates/ecnf-isoclass.html (line 37)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form.html (line 8)
- 2018-07-08 00:10:27 by Alina Bucur (Reviewed)