The degree of a number field $K$ is its degree as an extension of the rational field $\mathbb{Q}$, i.e., the dimension of $K$ as a $\mathbb{Q}$-vector space. The degree of $K/\Q$ is written $[K:\mathbb{Q}]$.
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-07 19:29:24
Referred to by:
History:
(expand/hide all)
- character.dirichlet.degree
- cmf.galois_conjugate
- dq.ecnf.extent
- dq.ecnf.reliability
- dq.ecnf.source
- gg.resolvents
- mf.hilbert
- nf
- nf.6.0.9747.1.top
- nf.arithmetically_equivalent
- nf.embedding
- nf.galois_group
- nf.invariants
- nf.label
- nf.root_discriminant
- nf.separable
- nf.serre_odlyzko_bound
- nf.signature
- rcs.cande.nf
- lmfdb/ecnf/ecnf_stats.py (line 34)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form_all.html (line 77)
- lmfdb/hilbert_modular_forms/templates/hilbert_modular_form_search.html (line 13)
- lmfdb/number_fields/number_field.py (line 90)
- lmfdb/number_fields/templates/nf-index.html (line 13)
- lmfdb/number_fields/templates/nf-index.html (line 64)
- lmfdb/number_fields/templates/nf-search.html (line 12)
- lmfdb/number_fields/templates/nf-show-field.html (line 32)
- 2018-07-07 19:29:24 by Alina Bucur (Reviewed)