The degree of a number field $K$ is its degree as an extension of the rational field $\mathbb{Q}$, i.e., the dimension of $K$ as a $\mathbb{Q}$-vector space. The degree of $K/\Q$ is written $[K:\mathbb{Q}]$.
Knowl status:
- Review status: reviewed
- Last edited by Alina Bucur on 2018-07-07 19:29:24
Referred to by:
History:
(expand/hide all)
- ag.complex_multiplication
- character.dirichlet.degree
- cmf.galois_conjugate
- dq.ecnf.extent
- dq.ecnf.reliability
- dq.ecnf.source
- ec.q.torsion_growth
- gg.arithmetically_equivalent
- gg.resolvents
- mf.hilbert
- nf
- nf.3.1.431.1.top
- nf.6.0.9747.1.top
- nf.arithmetically_equivalent
- nf.embedding
- nf.galois_group
- nf.invariants
- nf.label
- nf.minimal_sibling
- nf.reflex_field
- nf.root_discriminant
- nf.separable
- nf.serre_odlyzko_bound
- nf.signature
- rcs.cande.ec
- rcs.cande.nf
- rcs.rigor.ec
- rcs.source.ec
- lmfdb/ecnf/ecnf_stats.py (line 76)
- lmfdb/ecnf/ecnf_stats.py (line 87)
- lmfdb/ecnf/main.py (line 360)
- lmfdb/hilbert_modular_forms/hilbert_modular_form.py (line 140)
- lmfdb/hilbert_modular_forms/hilbert_modular_form.py (line 643)
- lmfdb/hilbert_modular_forms/hmf_stats.py (line 33)
- lmfdb/hilbert_modular_forms/hmf_stats.py (line 44)
- lmfdb/hilbert_modular_forms/hmf_stats.py (line 51)
- lmfdb/number_fields/number_field.py (line 126)
- lmfdb/number_fields/number_field.py (line 829)
- lmfdb/number_fields/number_field.py (line 1178)
- lmfdb/number_fields/templates/nf-index.html (line 12)
- lmfdb/number_fields/templates/nf-show-field.html (line 27)
- lmfdb/templates/datasets.html (line 20)
- 2018-07-07 19:29:24 by Alina Bucur (Reviewed)