A prime integer $p$ is a ramified prime of a number field $K$ if, when the ideal generated by $p$ is factored into prime ideals in the ring of integers
$\mathcal{O}_K$ of $K$,
$$p\mathcal{O}_K= \mathcal{P_1}^{e_1}\cdots \mathcal{P_k}^{e_k},$$
there is an $i$ such that $e_i\geq 2$.
The ramified primes of $K$ are the primes dividing the discriminant of $K$.
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2018-03-20 18:02:02
Referred to by:
History:
(expand/hide all)
- artin.ramified_primes
- modlgal.ramified
- nf.discriminant
- nf.invariants
- lmfdb/bianchi_modular_forms/bianchi_modular_form.py (line 754)
- lmfdb/hilbert_modular_forms/hilbert_modular_form.py (line 699)
- lmfdb/number_fields/number_field.py (line 880)
- lmfdb/number_fields/number_field.py (line 1216)
- lmfdb/number_fields/number_field.py (line 1223)
- lmfdb/number_fields/templates/nf-show-field.html (line 31)
- lmfdb/number_fields/templates/nf-show-field.html (lines 246-251)
- lmfdb/utils/search_parsing.py (line 1151)
- 2018-03-20 18:02:02 by John Jones (Reviewed)