show · nf.galois_closure all knowls · up · search:

If $K$ is a separable algebraic extension of a field $F$, then its Galois closure is the smallest extension field, in terms of inclusion, which contains $K$ and is Galois over $F$. If $K=F(\alpha)$ where $\alpha$ has irreducible polynomial $f$ over $F$, then the Galois closure of $K$ is the splitting field of $f$ over $F$.

Knowl status:
  • Review status: reviewed
  • Last edited by Alina Bucur on 2018-07-07 22:10:54
Referred to by:
History: (expand/hide all)