Let $K$ be a finite degree $n$ separable extension of a field $F$, and $K^{gal}$ be its Galois (or normal) closure. The Galois group for $K/F$ is the automorphism group $\Aut(K^{gal}/F)$.
This automorphism group acts on the $n$ embeddings $K\hookrightarrow K^{gal}$ via composition. As a result, we get an injection $\Aut(K^{gal}/F)\hookrightarrow S_n$, which is well-defined up to the labelling of the $n$ embeddings, which corresponds to being well-defined up to conjugation in $S_n$.
We use the notation $\Gal(K/F)$ for $\Aut(K/F)$ when $K=K^{gal}$.
There is a naming convention for Galois groups up to degree $47$.
Knowl status:
- Review status: reviewed
- Last edited by John Jones on 2019-09-06 18:36:25
Referred to by:
History:
(expand/hide all)
- artin
- character.dirichlet.galois_orbit
- gg.arithmetically_equiv_input
- gg.arithmetically_equivalent
- lf.galois_invariants
- lf.slope_content
- lf.wild_slopes
- lfunction.underlying_object
- nf.3.3.49.1.top
- nf.4.0.125.1.top
- nf.4.0.144.1.top
- nf.4.0.229.1.top
- nf.4.0.3136.1.top
- nf.5.1.2209.1.top
- nf.5.1.35152.1.top
- nf.5.5.14641.1.top
- nf.abelian
- nf.arithmetically_equivalent
- nf.galois_search
- nf.minimal_sibling
- st_group.component_group
- lmfdb/abvar/fq/main.py (lines 344-345)
- lmfdb/abvar/fq/stats.py (line 42)
- lmfdb/local_fields/main.py (line 296)
- lmfdb/local_fields/main.py (line 735)
- lmfdb/local_fields/templates/lf-show-field.html (line 72)
- lmfdb/number_fields/number_field.py (lines 883-885)
- lmfdb/number_fields/number_field.py (line 1185)
- lmfdb/number_fields/templates/nf-show-field.html (line 121)
- lmfdb/number_fields/templates/nf-show-field.html (line 257)
- 2019-09-06 18:36:25 by John Jones (Reviewed)
- 2019-09-06 18:34:06 by John Jones
- 2018-08-08 16:00:39 by John Jones (Reviewed)