Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
2.43.aba_jv |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 13 x + 43 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$18$ |
$[18, 1684, 78468, 3412420, 146970198, 6321140278, 271817359650, 11688193587844, 502592578782684, 21611482169939764]$ |
$961$ |
$[961, 3122289, 6239104144, 11666398503321, 21605860488041041, 39958222599622768896, 73885017175498257773641, 136613947538115345388194729, 252599316910463469824590135696, 467056164679511138905109926568049]$ |
$0$ |
$0$ |
$24$ |
$12$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.43.an 2 |
2.43.az_ji |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 13 x + 43 x^{2} )( 1 - 12 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$19$ |
$[19, 1709, 78808, 3415945, 147001069, 6321378278, 271818999583, 11688203658769, 502592632461544, 21611482397613389]$ |
$992$ |
$[992, 3166464, 6265960064, 11678438532096, 21610398195369632, 39959727057518800896, 73885462938782474313248, 136614065249070040071573504, 252599343889061033178011524736, 467056169599875642476041403783424]$ |
$0$ |
$0$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \) |
$C_2$, $C_2$ |
1.43.an $\times$ 1.43.am |
2.43.ay_iv |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 43 x^{2} )( 1 - 11 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$20$ |
$[20, 1732, 79076, 3418084, 147012740, 6321402934, 271818642332, 11688197654596, 502592575051388, 21611481987179332]$ |
$1023$ |
$[1023, 3207105, 6287128848, 11685744524025, 21612113707735023, 39959882914299828480, 73885365831535379680119, 136613995071113597933320425, 252599315035141729129084161552, 467056160729787308267771150861025]$ |
$2$ |
$2$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-51}) \) |
$C_2$, $C_2$ |
1.43.an $\times$ 1.43.al |
2.43.ay_iw |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 12 x + 43 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$20$ |
$[20, 1734, 79148, 3419470, 147031940, 6321616278, 271820639516, 11688213729694, 502592686140404, 21611482625287014]$ |
$1024$ |
$[1024, 3211264, 6292931584, 11690490986496, 21614936855716864, 39961231572058832896, 73885908704756071097344, 136614182960126158285307904, 252599370867661477951443813376, 467056174520240197882252401639424]$ |
$3$ |
$3$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
1.43.am 2 |
2.43.ax_ii |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 43 x^{2} )( 1 - 10 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$21$ |
$[21, 1753, 79278, 3419113, 147011871, 6321326578, 271817764869, 11688191506321, 502592550577674, 21611482027126393]$ |
$1054$ |
$[1054, 3244212, 6303084424, 11689259187744, 21611985974015074, 39959400248807772096, 73885127321310475066642, 136613923208864601395817600, 252599302734834291776492918056, 467056161593102507673862732822452]$ |
$1$ |
$1$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.43.an $\times$ 1.43.ak |
2.43.ax_ij |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 23 x + 217 x^{2} - 989 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$21$ |
$[21, 1755, 79347, 3420363, 147027856, 6321487215, 271819096017, 11688200798883, 502592605607451, 21611482304584150]$ |
$1055$ |
$[1055, 3248345, 6308637305, 11693538506525, 21614336225262000, 39960415703458055705, 73885489152015696544205, 136614031822157724887093525, 252599330392391419613683458755, 467056167589375823476207621728000]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.20525.1 |
$D_{4}$ |
simple |
2.43.ax_ik |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 12 x + 43 x^{2} )( 1 - 11 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$21$ |
$[21, 1757, 79416, 3421609, 147043611, 6321640934, 271820282265, 11688207725521, 502592628730248, 21611482214852957]$ |
$1056$ |
$[1056, 3252480, 6314191488, 11697804518400, 21616652728377696, 39961387434707988480, 73885811596923108760032, 136614112782109248571084800, 252599342013739092190789948032, 467056165650151770228972568070400]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-51}) \) |
$C_2$, $C_2$ |
1.43.am $\times$ 1.43.al |
2.43.aw_hv |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 43 x^{2} )( 1 - 9 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$22$ |
$[22, 1772, 79420, 3419284, 147003802, 6321224054, 271817114206, 11688190279396, 502592572940260, 21611482325929532]$ |
$1085$ |
$[1085, 3277785, 6314300720, 11689843257225, 21610799917183925, 39958752168802172160, 73884950459404654410365, 136613908868323579714650825, 252599313974104428472416307760, 467056168050681239910286844512425]$ |
$4$ |
$4$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-91}) \) |
$C_2$, $C_2$ |
1.43.an $\times$ 1.43.aj |
2.43.aw_hw |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 204 x^{2} - 946 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$22$ |
$[22, 1774, 79486, 3420406, 147017002, 6321343822, 271818000322, 11688195892894, 502592606060182, 21611482536227134]$ |
$1086$ |
$[1086, 3281892, 6319604502, 11693683130064, 21612740559639126, 39959509262747448708, 73885191321583913920062, 136613974479973435905487872, 252599330619931353109263910062, 467056172595524152499974776522372]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.122688.1 |
$D_{4}$ |
simple |
2.43.aw_hx |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 205 x^{2} - 946 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$22$ |
$[22, 1776, 79552, 3421524, 147029982, 6321457326, 271818763546, 11688199646628, 502592616166960, 21611482505586496]$ |
$1087$ |
$[1087, 3286001, 6324909508, 11697509645801, 21614648909244967, 39960226764734540432, 73885398779792292730207, 136614018354345812539743113, 252599335699522360302199633636, 467056171933334517153275630764641]$ |
$3$ |
$3$ |
$2$ |
$2$ |
$1$ |
4.0.91712.2 |
$D_{4}$ |
simple |
2.43.aw_hy |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 12 x + 43 x^{2} )( 1 - 10 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$22$ |
$[22, 1778, 79618, 3422638, 147042742, 6321564578, 271819404802, 11688201577246, 502592604256534, 21611482254800018]$ |
$1088$ |
$[1088, 3290112, 6330215744, 11701322809344, 21616524967830848, 39960904751043204096, 73885573085259223616576, 136614040919798333217177600, 252599329713430341117131218496, 467056166513466978729956335997952]$ |
$6$ |
$6$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.43.am $\times$ 1.43.ak |
2.43.aw_hz |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 11 x + 43 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$22$ |
$[22, 1780, 79684, 3423748, 147055282, 6321665590, 271819925014, 11688201721348, 502592571320092, 21611481804418900]$ |
$1089$ |
$[1089, 3294225, 6335523216, 11705122625625, 21618368737250769, 39961543297965062400, 73885714489217774699721, 136614042604128388950275625, 252599313159820002356148027024, 467056156780063511031807879980625]$ |
$6$ |
$6$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
1.43.al 2 |
2.43.av_hi |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 43 x^{2} )( 1 - 8 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$23$ |
$[23, 1789, 79508, 3418825, 146992673, 6321140278, 271816950155, 11688193440529, 502592611936844, 21611482524392989]$ |
$1116$ |
$[1116, 3307824, 6321251664, 11688275491776, 21609164073030516, 39958222599622768896, 73884905867392335000036, 136613945816268614244105984, 252599333573498791197463353936, 467056172339770716474715006440624]$ |
$6$ |
$6$ |
$24$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.43.an $\times$ 1.43.ai |
2.43.av_hj |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 191 x^{2} - 903 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$23$ |
$[23, 1791, 79571, 3419827, 147003488, 6321229179, 271817555501, 11688197308723, 502592639489453, 21611482753259286]$ |
$1117$ |
$[1117, 3311905, 6326307103, 11691703590525, 21610753971704272, 39958784566299941785, 73885070411067210306043, 136613991028476854065123125, 252599347421236953553969373377, 467056177285910713191648121926400]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.386757.2 |
$D_{4}$ |
simple |
2.43.av_hk |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 192 x^{2} - 903 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$23$ |
$[23, 1793, 79634, 3420825, 147014093, 6321312434, 271818057359, 11688199727665, 502592650556726, 21611482823443313]$ |
$1118$ |
$[1118, 3315988, 6331363688, 11695118285344, 21612313035019538, 39959310845570374336, 73885206824913813893954, 136614019301536828204303488, 252599352983566419973702773512, 467056178802691588727797562437588]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.413848.1 |
$D_{4}$ |
simple |
2.43.av_hl |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 193 x^{2} - 903 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$23$ |
$[23, 1795, 79697, 3421819, 147024488, 6321390055, 271818456611, 11688200730499, 502592645985761, 21611482751459350]$ |
$1119$ |
$[1119, 3320073, 6336421425, 11698519580829, 21613841264552304, 39959801513617966425, 73885315348722468342261, 136614031022846898553386069, 252599350686232713154888068675, 467056177247011426712346638838528]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.336141.1 |
$D_{4}$ |
simple |
2.43.av_hm |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 12 x + 43 x^{2} )( 1 - 9 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$23$ |
$[23, 1797, 79760, 3422809, 147034673, 6321462054, 271818754139, 11688200350321, 502592626619120, 21611482553603157]$ |
$1120$ |
$[1120, 3324160, 6341480320, 11701907481600, 21615338661901600, 39960256646636892160, 73885396222286359234720, 136614026579244955266355200, 252599340952701678211177740160, 467056172971045778995974265196800]$ |
$8$ |
$8$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-91}) \) |
$C_2$, $C_2$ |
1.43.am $\times$ 1.43.aj |
2.43.av_hn |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 195 x^{2} - 903 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$23$ |
$[23, 1799, 79823, 3423795, 147044648, 6321528443, 271818950825, 11688198620179, 502592593294829, 21611482245952214]$ |
$1121$ |
$[1121, 3328249, 6346540379, 11705281992301, 21616805228689616, 39960676320831738481, 73885449685401611061071, 136614006357008443186262229, 252599324204159489268023373821, 467056166322252853665348301997824]$ |
$5$ |
$5$ |
$2$ |
$2$ |
$1$ |
4.0.77725.1 |
$D_{4}$ |
simple |
2.43.av_ho |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 11 x + 43 x^{2} )( 1 - 10 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$23$ |
$[23, 1801, 79886, 3424777, 147054413, 6321589234, 271819047551, 11688195573073, 502592546846378, 21611481844365961]$ |
$1122$ |
$[1122, 3332340, 6351601608, 11708643117600, 21618240966561822, 39961060612417644480, 73885475977867364090478, 136613970741854388903120000, 252599300859512656322227936872, 467056157643378703137157336451700]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.43.al $\times$ 1.43.ak |
2.43.au_gv |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 43 x^{2} )( 1 - 7 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1804, 79548, 3417940, 146981544, 6321097078, 271817237688, 11688198346084, 502592637404004, 21611482475147164]$ |
$1147$ |
$[1147, 3334329, 6324411184, 11685252676041, 21607528228877107, 39957949521550884096, 73884984024033124980043, 136614003153361518548082249, 252599346373104832039830704176, 467056171275495444013682391819849]$ |
$6$ |
$6$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-123}) \) |
$C_2$, $C_2$ |
1.43.an $\times$ 1.43.ah |
2.43.au_gw |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 178 x^{2} - 860 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1806, 79608, 3418830, 146990344, 6321163422, 271817679528, 11688201562014, 502592665233144, 21611482718538286]$ |
$1148$ |
$[1148, 3338384, 6329219036, 11688296646656, 21608821826879868, 39958368896241911696, 73885104123990331111772, 136614040741800572389720064, 252599360359826235526768522364, 467056176535538427014631818887824]$ |
$14$ |
$14$ |
$2$ |
$2$ |
$1$ |
4.0.14336.1 |
$D_{4}$ |
simple |
2.43.au_gx |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 179 x^{2} - 860 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1808, 79668, 3419716, 146998944, 6321224702, 271818034848, 11688203656708, 502592681255724, 21611482855023728]$ |
$1149$ |
$[1149, 3342441, 6334027956, 11691327169881, 21610086049060989, 39958756261077330576, 73885200706208265592821, 136614065225001885510870825, 252599368412657221660661101524, 467056179485191178186514472862121]$ |
$4$ |
$4$ |
$2$ |
$2$ |
$1$ |
4.0.1117200.1 |
$D_{4}$ |
simple |
2.43.au_gy |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 180 x^{2} - 860 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1810, 79728, 3420598, 147007344, 6321280930, 271818304488, 11688204659998, 502592686187064, 21611482897604050]$ |
$1150$ |
$[1150, 3346500, 6338837950, 11694344250000, 21611320896760750, 39959111692159618500, 73885273999043677641550, 136614076951650028608000000, 252599370891112412801730008350, 467056180405415066021337841162500]$ |
$20$ |
$20$ |
$2$ |
$2$ |
$1$ |
4.0.1126656.1 |
$D_{4}$ |
simple |
2.43.au_gz |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 181 x^{2} - 860 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1812, 79788, 3421476, 147015544, 6321332118, 271818489288, 11688204601668, 502592680738164, 21611482859082772]$ |
$1151$ |
$[1151, 3350561, 6343649024, 11697347891321, 21612526371340911, 39959435265600045056, 73885324230855518609399, 136614076269868915821845225, 252599368152535277332457428736, 467056179572913136528465117037121]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.62225.1 |
$D_{4}$ |
simple |
2.43.au_ha |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 12 x + 43 x^{2} )( 1 - 8 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1814, 79848, 3422350, 147023544, 6321378278, 271818590088, 11688203511454, 502592665615704, 21611482752066614]$ |
$1152$ |
$[1152, 3354624, 6348461184, 11700338098176, 21613702474184832, 39959727057518800896, 73885351630005007175808, 136614063527221825329168384, 252599360552098134228397800576, 467056177260135300745297112346624]$ |
$24$ |
$24$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.43.am $\times$ 1.43.ai |
2.43.au_hb |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 183 x^{2} - 860 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1816, 79908, 3423220, 147031344, 6321419422, 271818607728, 11688201419044, 502592641522044, 21611482588965736]$ |
$1153$ |
$[1153, 3358689, 6353274436, 11703314874921, 21614849206697593, 39959987144045127696, 73885356424855695450337, 136614039070711420477979529, 252599348442802157835779076964, 467056173735283522304142183620049]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.512784.2 |
$D_{4}$ |
simple |
2.43.au_hc |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 184 x^{2} - 860 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1818, 79968, 3424086, 147038944, 6321455562, 271818543048, 11688198354078, 502592609155224, 21611482381993978]$ |
$1154$ |
$[1154, 3362756, 6358088786, 11706278225936, 21615966570306114, 39960215601317448836, 73885338843773535987026, 136614003246779771473510400, 252599332175477382860941023554, 467056169262317005057519242204996]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.262400.5 |
$D_{4}$ |
simple |
2.43.au_hd |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 11 x + 43 x^{2} )( 1 - 9 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$24$ |
$[24, 1820, 80028, 3424948, 147046344, 6321486710, 271818396888, 11688194346148, 502592569208964, 21611482143169100]$ |
$1155$ |
$[1155, 3366825, 6362904240, 11709228155625, 21617054566459275, 39960412505483500800, 73885299115126949716035, 136613956401308377622255625, 252599312098782709576723635120, 467056164100957380764190681545625]$ |
$12$ |
$12$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \), \(\Q(\sqrt{-91}) \) |
$C_2$, $C_2$ |
1.43.al $\times$ 1.43.aj |
2.43.au_he |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 10 x + 43 x^{2} )^{2}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$24$ |
$[24, 1822, 80088, 3425806, 147053544, 6321512878, 271818170088, 11688189424798, 502592522372664, 21611481884313022]$ |
$1156$ |
$[1156, 3370896, 6367720804, 11712164668416, 21618113196628036, 39960577932700465296, 73885237467286894797604, 136613898879618190141440000, 252599288559205909250984800516, 467056158506693896838274475460496]$ |
$11$ |
$11$ |
$8$ |
$8$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
1.43.ak 2 |
2.43.at_gi |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 43 x^{2} )( 1 - 6 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1817, 79546, 3416809, 146972515, 6321099314, 271817793937, 11688202335121, 502592636006158, 21611482253187257]$ |
$1178$ |
$[1178, 3357300, 6324253208, 11681389620000, 21606201062297798, 39957963655869604800, 73885135222515674063414, 136614049778011546466640000, 252599345670557782986566035832, 467056166478612855533329788016500]$ |
$4$ |
$4$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-34}) \) |
$C_2$, $C_2$ |
1.43.an $\times$ 1.43.ag |
2.43.at_gj |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 165 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1819, 79603, 3417595, 146979640, 6321149863, 271818151441, 11688205418659, 502592664546799, 21611482483233814]$ |
$1179$ |
$[1179, 3361329, 6328814229, 11684077082541, 21607248381873264, 39958283186466191361, 73885232398686870457089, 136614085819040246167835829, 252599360014874192323330973511, 467056171450259960073304978785024]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.22725.1 |
$D_{4}$ |
simple |
2.43.at_gk |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 166 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1821, 79660, 3418377, 146986575, 6321195894, 271818437125, 11688207638673, 502592684547700, 21611482637880061]$ |
$1180$ |
$[1180, 3365360, 6333376240, 11686751057600, 21608267787046900, 39958574157657201920, 73885310052790950351460, 136614111767020559763680000, 252599370067180098289601524720, 467056174792394606583791343826800]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.593393.1 |
$D_{4}$ |
simple |
2.43.at_gl |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 167 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1823, 79717, 3419155, 146993320, 6321237419, 271818651787, 11688209021875, 502592696608387, 21611482727276438]$ |
$1181$ |
$[1181, 3369393, 6337939247, 11689411549149, 21609259278940976, 39958836645477028041, 73885368401755725123083, 136614127934168388130778613, 252599376128792805815724782081, 467056176724382842486486833285888]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.291597.2 |
$D_{4}$ |
simple |
2.43.at_gm |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 168 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1825, 79774, 3419929, 146999875, 6321274450, 271818796225, 11688209594929, 502592701324282, 21611482761396625]$ |
$1182$ |
$[1182, 3373428, 6342503256, 11692058561184, 21610222858697682, 39959070725967480000, 73885407662510650621218, 136614134632138836691027584, 252599378498967002282837836344, 467056177461770670752347345208628]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.2639736.2 |
$D_{4}$ |
simple |
2.43.at_gn |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 169 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1827, 79831, 3420699, 147006240, 6321306999, 271818871237, 11688209384451, 502592699286703, 21611482750037782]$ |
$1183$ |
$[1183, 3377465, 6347068273, 11694692097725, 21611158527479248, 39959276475177906665, 73885428051986882436469, 136614132172026231052018325, 252599377474894760546467028707, 467056177216289237073328385299200]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.2466653.1 |
$D_{4}$ |
simple |
2.43.at_go |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 12 x + 43 x^{2} )( 1 - 7 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1829, 79888, 3421465, 147012415, 6321335078, 271818877621, 11688208417009, 502592691082864, 21611482702820789]$ |
$1184$ |
$[1184, 3381504, 6351634304, 11697312162816, 21612066286468064, 39959453969165316096, 73885429787117332011104, 136614120864364133109633024, 252599373351705542118881388416, 467056176195860017072289003860224]$ |
$12$ |
$12$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-123}) \) |
$C_2$, $C_2$ |
1.43.am $\times$ 1.43.ah |
2.43.at_gp |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 171 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1831, 79945, 3422227, 147018400, 6321358699, 271818816175, 11688206719123, 502592677295875, 21611482629190486]$ |
$1185$ |
$[1185, 3385545, 6356201355, 11699918760525, 21612946136866800, 39959603283994496865, 73885413084836723596095, 136614101019125357619583125, 252599366422466200514502893565, 467056174604600003552794445049600]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.1745037.2 |
$D_{4}$ |
simple |
2.43.at_gq |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
|
✓ |
|
✓ |
✓ |
$1 - 19 x + 172 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,\frac{1}{2},\frac{1}{2},1]$ |
$1$ |
$1$ |
$1$ |
$2$ |
$0$ |
$25$ |
$[25, 1833, 80002, 3422985, 147024195, 6321377874, 271818687697, 11688204317265, 502592658504742, 21611482538415913]$ |
$1186$ |
$[1186, 3389588, 6360769432, 11702511894944, 21613798079898526, 39959724495738140096, 73885378162081652059918, 136614072945721989244684928, 252599356978180984762737156856, 467056172642826893790598150029588]$ |
$8$ |
$8$ |
$2$ |
$2$ |
$1$ |
4.0.1292408.1 |
$D_{4}$ |
simple |
2.43.at_gr |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 173 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1835, 80059, 3423739, 147029800, 6321392615, 271818492985, 11688201237859, 502592635284367, 21611482439590550]$ |
$1187$ |
$[1187, 3393633, 6365338541, 11705091570189, 21614622116806832, 39959817680476962225, 73885325235790641554153, 136614036953005400084706549, 252599345307791543092649464799, 467056170507064276868628573481728]$ |
$6$ |
$6$ |
$2$ |
$2$ |
$1$ |
4.0.843141.1 |
$D_{4}$ |
simple |
2.43.at_gs |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 11 x + 43 x^{2} )( 1 - 8 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1837, 80116, 3424489, 147035215, 6321402934, 271818232837, 11688197507281, 502592608205548, 21611482341632557]$ |
$1188$ |
$[1188, 3397680, 6369908688, 11707657790400, 21615418248855948, 39959882914299828480, 73885254522904205040924, 136613993349266267695660800, 252599331698176926793972788432, 467056168390046821057351705940400]$ |
$12$ |
$12$ |
$12$ |
$6$ |
$1$ |
\(\Q(\sqrt{-51}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.43.al $\times$ 1.43.ai |
2.43.at_gt |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 175 x^{2} - 817 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1839, 80173, 3425235, 147040440, 6321408843, 271817908051, 11688193151859, 502592577834979, 21611482253285014]$ |
$1189$ |
$[1189, 3401729, 6374479879, 11710210559741, 21616186477330864, 39959920273303877081, 73885166240364904687219, 136613942442234593605458869, 252599316434153594258996436121, 467056166480725461242426246087424]$ |
$5$ |
$5$ |
$2$ |
$2$ |
$1$ |
4.0.150725.1 |
$D_{4}$ |
simple |
2.43.at_gu |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
|
$( 1 - 10 x + 43 x^{2} )( 1 - 9 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$25$ |
$[25, 1841, 80230, 3425977, 147045475, 6321410354, 271817519425, 11688188197873, 502592544735250, 21611482183116161]$ |
$1190$ |
$[1190, 3405780, 6379052120, 11712749882400, 21616926803537450, 39959929833594644160, 73885060605117413131130, 136613884539079722332880000, 252599299798475415209946434360, 467056164964272586401615041178900]$ |
$0$ |
$0$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-91}) \) |
$C_2$, $C_2$ |
1.43.ak $\times$ 1.43.aj |
2.43.as_fv |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 13 x + 43 x^{2} )( 1 - 5 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$1$ |
$1$ |
$26$ |
$[26, 1828, 79508, 3415588, 146966846, 6321140278, 271818394874, 11688203769796, 502592611936844, 21611482030503268]$ |
$1209$ |
$[1209, 3376737, 6321251664, 11677219158969, 21605367779837049, 39958222599622768896, 73885298568000353763537, 136614066546775480921010025, 252599333573498791197463353936, 467056161666081781768506278960577]$ |
$12$ |
$12$ |
$24$ |
$12$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.43.an $\times$ 1.43.af |
2.43.as_fw |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 152 x^{2} - 774 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$26$ |
$[26, 1830, 79562, 3416278, 146972606, 6321180390, 271818717182, 11688206879518, 502592639533706, 21611482226376150]$ |
$1210$ |
$[1210, 3380740, 6325566610, 11679577707600, 21606214423395250, 39958476157343881060, 73885386177491118200410, 136614102893850405691929600, 252599347443478166206047285610, 467056165899185072482801639478500]$ |
$16$ |
$16$ |
$2$ |
$2$ |
$1$ |
4.0.3297600.1 |
$D_{4}$ |
simple |
2.43.as_fx |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 153 x^{2} - 774 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$26$ |
$[26, 1832, 79616, 3416964, 146978186, 6321216494, 271818980270, 11688209324356, 502592660809328, 21611482365549032]$ |
$1211$ |
$[1211, 3384745, 6329882468, 11681922732025, 21607034615691371, 39958704378916370320, 73885457689812367205747, 136614131469623580115768425, 252599358136449048492433441412, 467056168906917334443228954649225]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.4368448.1 |
$D_{4}$ |
simple |
2.43.as_fy |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 154 x^{2} - 774 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$26$ |
$[26, 1834, 79670, 3417646, 146983586, 6321248602, 271819184894, 11688211128094, 502592676262346, 21611482455892234]$ |
$1212$ |
$[1212, 3388752, 6334199244, 11684254235904, 21607828357647372, 39958907340318779088, 73885513310466782937468, 136614152552087068741619712, 252599365903022147171363180508, 467056170859367844534948168702672]$ |
$24$ |
$24$ |
$2$ |
$2$ |
$1$ |
4.0.316368.2 |
$C_4$ |
simple |
2.43.as_fz |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 155 x^{2} - 774 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$26$ |
$[26, 1836, 79724, 3418324, 146988806, 6321276726, 271819331810, 11688212314468, 502592686387508, 21611482505118396]$ |
$1213$ |
$[1213, 3392761, 6338516944, 11686572222921, 21608595650203573, 39959085117535804672, 73885553244958229322109, 136614166418672039940945993, 252599370991854099633959693008, 467056171923218181011376979868041]$ |
$12$ |
$12$ |
$2$ |
$2$ |
$1$ |
4.0.338832.4 |
$D_{4}$ |
simple |
2.43.as_ga |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 156 x^{2} - 774 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$26$ |
$[26, 1838, 79778, 3418998, 146993846, 6321300878, 271819421774, 11688212907166, 502592691675674, 21611482520782718]$ |
$1214$ |
$[1214, 3396772, 6342835574, 11688876696784, 21609336494318774, 39959237786558409796, 73885577698791798176702, 136614173346248777411097600, 252599373649647473424752028206, 467056172261747410450234353507652]$ |
$10$ |
$10$ |
$2$ |
$2$ |
$1$ |
4.0.5490496.1 |
$D_{4}$ |
simple |
2.43.as_gb |
$2$ |
$\F_{43}$ |
$43$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 157 x^{2} - 774 x^{3} + 1849 x^{4}$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$26$ |
$[26, 1840, 79832, 3419668, 146998706, 6321321070, 271819455542, 11688212929828, 502592692613816, 21611482510283200]$ |
$1215$ |
$[1215, 3400785, 6347155140, 11691167661225, 21610050890970375, 39959365423383933840, 73885586877473856106815, 136614173611126692066057225, 252599374121150768237128816740, 467056172034837274734203142074625]$ |
$30$ |
$30$ |
$2$ |
$2$ |
$1$ |
4.0.65600.5 |
$D_{4}$ |
simple |
2.43.as_gc |
$2$ |
$\F_{43}$ |
$43$ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
$( 1 - 12 x + 43 x^{2} )( 1 - 6 x + 43 x^{2} )$ |
$[0,0,1,1]$ |
$0$ |
$2$ |
$0$ |
$2$ |
$0$ |
$26$ |
$[26, 1842, 79886, 3420334, 147003386, 6321337314, 271819433870, 11688212406046, 502592689685018, 21611482480860882]$ |
$1216$ |
$[1216, 3404800, 6351475648, 11693445120000, 21610738841154496, 39959468104016204800, 73885580986512092185792, 136614167489054334320640000, 252599372649158418030836984512, 467056171398977378057519768704000]$ |
$40$ |
$40$ |
$4$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-34}) \) |
$C_2$, $C_2$ |
1.43.am $\times$ 1.43.ag |