Properties

Label 2.43.au_gz
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $1 - 20 x + 181 x^{2} - 860 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.117188704887$, $\pm0.298340802765$
Angle rank:  $2$ (numerical)
Number field:  4.0.62225.1
Galois group:  $D_{4}$
Jacobians:  $8$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1151$ $3350561$ $6343649024$ $11697347891321$ $21612526371340911$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $24$ $1812$ $79788$ $3421476$ $147015544$ $6321332118$ $271818489288$ $11688204601668$ $502592680738164$ $21611482859082772$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The endomorphism algebra of this simple isogeny class is 4.0.62225.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.u_gz$2$(not in LMFDB)