Properties

Label 2.43.as_fx
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $1 - 18 x + 153 x^{2} - 774 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.0761203202032$, $\pm0.368681889582$
Angle rank:  $2$ (numerical)
Number field:  4.0.4368448.1
Galois group:  $D_{4}$
Jacobians:  $12$
Isomorphism classes:  12
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1211$ $3384745$ $6329882468$ $11681922732025$ $21607034615691371$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $1832$ $79616$ $3416964$ $146978186$ $6321216494$ $271818980270$ $11688209324356$ $502592660809328$ $21611482365549032$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The endomorphism algebra of this simple isogeny class is 4.0.4368448.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.s_fx$2$(not in LMFDB)