Properties

Label 2.43.aw_hy
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 43 x^{2} )( 1 - 10 x + 43 x^{2} )$
  $1 - 22 x + 206 x^{2} - 946 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.132197172840$, $\pm0.223975234504$
Angle rank:  $2$ (numerical)
Jacobians:  $6$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1088$ $3290112$ $6330215744$ $11701322809344$ $21616524967830848$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $22$ $1778$ $79618$ $3422638$ $147042742$ $6321564578$ $271819404802$ $11688201577246$ $502592604256534$ $21611482254800018$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.am $\times$ 1.43.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.ac_abi$2$(not in LMFDB)
2.43.c_abi$2$(not in LMFDB)
2.43.w_hy$2$(not in LMFDB)