Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 43 x^{2} )( 1 - 10 x + 43 x^{2} )$ |
| $1 - 22 x + 206 x^{2} - 946 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.132197172840$, $\pm0.223975234504$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $6$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1088$ | $3290112$ | $6330215744$ | $11701322809344$ | $21616524967830848$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $1778$ | $79618$ | $3422638$ | $147042742$ | $6321564578$ | $271819404802$ | $11688201577246$ | $502592604256534$ | $21611482254800018$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=3 x^6+35 x^5+42 x^4+16 x^3+33 x^2+17 x+33$
- $y^2=21 x^6+21 x^5+41 x^4+18 x^3+10 x^2+9 x+41$
- $y^2=38 x^6+8 x^5+15 x^4+5 x^3+15 x^2+8 x+38$
- $y^2=18 x^6+17 x^5+28 x^4+12 x^3+28 x^2+17 x+18$
- $y^2=33 x^6+x^5+2 x^4+10 x^3+2 x^2+x+33$
- $y^2=6 x^6+40 x^5+x^4+38 x^3+38 x^2+11 x+24$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.am $\times$ 1.43.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.ac_abi | $2$ | (not in LMFDB) |
| 2.43.c_abi | $2$ | (not in LMFDB) |
| 2.43.w_hy | $2$ | (not in LMFDB) |