Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 13 x + 43 x^{2} )^{2}$ |
$1 - 26 x + 255 x^{2} - 1118 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.0421616081610$, $\pm0.0421616081610$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $0$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $961$ | $3122289$ | $6239104144$ | $11666398503321$ | $21605860488041041$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $1684$ | $78468$ | $3412420$ | $146970198$ | $6321140278$ | $271817359650$ | $11688193587844$ | $502592578782684$ | $21611482169939764$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.an 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.