Properties

Label 2.43.as_fz
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $1 - 18 x + 155 x^{2} - 774 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.100695717907$, $\pm0.361290196300$
Angle rank:  $2$ (numerical)
Number field:  4.0.338832.4
Galois group:  $D_{4}$
Jacobians:  $12$
Isomorphism classes:  12

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1213$ $3392761$ $6338516944$ $11686572222921$ $21608595650203573$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $1836$ $79724$ $3418324$ $146988806$ $6321276726$ $271819331810$ $11688212314468$ $502592686387508$ $21611482505118396$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The endomorphism algebra of this simple isogeny class is 4.0.338832.4.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.s_fz$2$(not in LMFDB)