Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 43 x^{2} )( 1 - 8 x + 43 x^{2} )$ |
| $1 - 20 x + 182 x^{2} - 860 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.132197172840$, $\pm0.291171725172$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $24$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1152$ | $3354624$ | $6348461184$ | $11700338098176$ | $21613702474184832$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $1814$ | $79848$ | $3422350$ | $147023544$ | $6321378278$ | $271818590088$ | $11688203511454$ | $502592665615704$ | $21611482752066614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=26 x^6+5 x^5+8 x^4+9 x^3+31 x^2+33 x+13$
- $y^2=28 x^6+9 x^4+34 x^3+10 x^2+14 x+26$
- $y^2=8 x^5+6 x^4+24 x^3+4 x^2+37 x$
- $y^2=3 x^6+3 x^5+34 x^4+2 x^3+22 x^2+2 x+19$
- $y^2=30 x^6+x^5+5 x^4+19 x^3+5 x^2+x+30$
- $y^2=7 x^6+20 x^5+20 x^4+17 x^3+20 x^2+20 x+7$
- $y^2=17 x^6+5 x^5+31 x^4+21 x^3+31 x^2+5 x+17$
- $y^2=29 x^6+10 x^5+33 x^4+36 x^3+33 x^2+10 x+29$
- $y^2=31 x^6+25 x^5+21 x^4+13 x^3+4 x^2+9 x+38$
- $y^2=27 x^6+30 x^5+27 x^4+29 x^3+33 x^2+5 x+27$
- $y^2=41 x^6+x^5+10 x^4+31 x^3+10 x^2+x+41$
- $y^2=8 x^5+31 x^4+8 x^3+21 x^2+3 x$
- $y^2=24 x^6+2 x^5+8 x^4+26 x^3+20 x^2+34 x+31$
- $y^2=37 x^6+27 x^5+17 x^4+29 x^3+4 x^2+37 x+12$
- $y^2=40 x^6+28 x^5+30 x^4+7 x^3+30 x^2+28 x+40$
- $y^2=7 x^6+3 x^5+26 x^4+34 x^3+26 x^2+3 x+7$
- $y^2=8 x^6+21 x^5+26 x^4+20 x^3+10 x^2+29 x+34$
- $y^2=5 x^6+16 x^5+5 x^4+40 x^3+5 x^2+16 x+5$
- $y^2=26 x^6+22 x^5+38 x^4+36 x^3+38 x^2+22 x+26$
- $y^2=30 x^6+6 x^5+29 x^4+16 x^3+26 x^2+15 x+33$
- $y^2=12 x^6+40 x^5+38 x^4+4 x^3+10 x^2+30 x+42$
- $y^2=42 x^6+21 x^5+25 x^3+21 x+42$
- $y^2=19 x^6+19 x^5+29 x^4+6 x^3+39 x^2+38 x+22$
- $y^2=14 x^5+3 x^4+40 x^3+42 x^2+30 x+18$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.am $\times$ 1.43.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.