Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 13 x + 43 x^{2} )( 1 - 6 x + 43 x^{2} )$ |
| $1 - 19 x + 164 x^{2} - 817 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.0421616081610$, $\pm0.348746511119$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $4$ |
| Cyclic group of points: | yes |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1178$ | $3357300$ | $6324253208$ | $11681389620000$ | $21606201062297798$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $25$ | $1817$ | $79546$ | $3416809$ | $146972515$ | $6321099314$ | $271817793937$ | $11688202335121$ | $502592636006158$ | $21611482253187257$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=18 x^6+6 x^5+28 x^4+39 x^3+13 x^2+9 x+34$
- $y^2=24 x^6+39 x^5+5 x^4+x^3+14 x^2+11 x+11$
- $y^2=29 x^6+35 x^5+18 x^4+3 x^3+13 x^2+18 x+3$
- $y^2=37 x^6+40 x^5+17 x^4+14 x^3+2 x^2+25 x+13$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.an $\times$ 1.43.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.