Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 19 x + 173 x^{2} - 817 x^{3} + 1849 x^{4}$ |
| Frobenius angles: | $\pm0.169319344707$, $\pm0.300345078312$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.843141.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $6$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1187$ | $3393633$ | $6365338541$ | $11705091570189$ | $21614622116806832$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $25$ | $1835$ | $80059$ | $3423739$ | $147029800$ | $6321392615$ | $271818492985$ | $11688201237859$ | $502592635284367$ | $21611482439590550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=14 x^6+4 x^5+9 x^4+11 x^3+7 x^2+7 x+25$
- $y^2=19 x^6+40 x^5+7 x^4+18 x^3+29 x^2+32 x+21$
- $y^2=x^6+2 x^4+12 x^3+5 x^2+35 x+33$
- $y^2=13 x^6+20 x^5+19 x^4+9 x^3+34 x^2+9 x+19$
- $y^2=16 x^6+16 x^5+12 x^4+8 x^3+12 x^2+19 x+33$
- $y^2=20 x^6+7 x^5+6 x^4+30 x^3+3 x^2+28 x+18$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is 4.0.843141.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.t_gr | $2$ | (not in LMFDB) |