Properties

Label 2.43.az_ji
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 13 x + 43 x^{2} )( 1 - 12 x + 43 x^{2} )$
  $1 - 25 x + 242 x^{2} - 1075 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.0421616081610$, $\pm0.132197172840$
Angle rank:  $2$ (numerical)
Jacobians:  $0$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $992$ $3166464$ $6265960064$ $11678438532096$ $21610398195369632$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $19$ $1709$ $78808$ $3415945$ $147001069$ $6321378278$ $271818999583$ $11688203658769$ $502592632461544$ $21611482397613389$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.an $\times$ 1.43.am and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.ab_acs$2$(not in LMFDB)
2.43.b_acs$2$(not in LMFDB)
2.43.z_ji$2$(not in LMFDB)
2.43.ah_ba$3$(not in LMFDB)
2.43.ae_ak$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.ab_acs$2$(not in LMFDB)
2.43.b_acs$2$(not in LMFDB)
2.43.z_ji$2$(not in LMFDB)
2.43.ah_ba$3$(not in LMFDB)
2.43.ae_ak$3$(not in LMFDB)
2.43.au_ha$6$(not in LMFDB)
2.43.ar_fq$6$(not in LMFDB)
2.43.e_ak$6$(not in LMFDB)
2.43.h_ba$6$(not in LMFDB)
2.43.r_fq$6$(not in LMFDB)
2.43.u_ha$6$(not in LMFDB)