Properties

Label 2.43.ay_iw
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 43 x^{2} )^{2}$
  $1 - 24 x + 230 x^{2} - 1032 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.132197172840$, $\pm0.132197172840$
Angle rank:  $1$ (numerical)
Jacobians:  $3$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1024$ $3211264$ $6292931584$ $11690490986496$ $21614936855716864$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $20$ $1734$ $79148$ $3419470$ $147031940$ $6321616278$ $271820639516$ $11688213729694$ $502592686140404$ $21611482625287014$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.a_acg$2$(not in LMFDB)
2.43.y_iw$2$(not in LMFDB)
2.43.m_dx$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.a_acg$2$(not in LMFDB)
2.43.y_iw$2$(not in LMFDB)
2.43.m_dx$3$(not in LMFDB)
2.43.a_cg$4$(not in LMFDB)
2.43.am_dx$6$(not in LMFDB)