| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.83.as |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$66$ |
$[66, 6732, 570438, 47447136, 3938951346, 326939694444, 27136046180694, 2252292201929088, 186940255122902754, 15516041187109801932]$ |
$66$ |
$[66, 6732, 570438, 47447136, 3938951346, 326939694444, 27136046180694, 2252292201929088, 186940255122902754, 15516041187109801932]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.83.ar |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$67$ |
$[67, 6767, 571108, 47456971, 3939074117, 326941054544, 27136059791327, 2252292325230483, 186940256119553884, 15516041193963493007]$ |
$67$ |
$[67, 6767, 571108, 47456971, 3939074117, 326941054544, 27136059791327, 2252292325230483, 186940256119553884, 15516041193963493007]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.83.aq |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$68$ |
$[68, 6800, 571676, 47464000, 3939140788, 326941504400, 27136060774156, 2252292294816000, 186940255458255908, 15516041185055114000]$ |
$68$ |
$[68, 6800, 571676, 47464000, 3939140788, 326941504400, 27136060774156, 2252292294816000, 186940255458255908, 15516041185055114000]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.83.ap |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$69$ |
$[69, 6831, 572148, 47468619, 3939165219, 326941387344, 27136055859513, 2252292221027475, 186940254696666444, 15516041179565004111]$ |
$69$ |
$[69, 6831, 572148, 47468619, 3939165219, 326941387344, 27136055859513, 2252292221027475, 186940254696666444, 15516041179565004111]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
| 1.83.ao |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$70$ |
$[70, 6860, 572530, 47471200, 3939159350, 326940966380, 27136049439170, 2252292161212800, 186940254403261030, 15516041180992820300]$ |
$70$ |
$[70, 6860, 572530, 47471200, 3939159350, 326940966380, 27136049439170, 2252292161212800, 186940254403261030, 15516041180992820300]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-34}) \) |
$C_2$ |
simple |
| 1.83.an |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$71$ |
$[71, 6887, 572828, 47472091, 3939133321, 326940435344, 27136044103099, 2252292137470323, 186940254608428964, 15516041186494908407]$ |
$71$ |
$[71, 6887, 572828, 47472091, 3939133321, 326940435344, 27136044103099, 2252292137470323, 186940254608428964, 15516041186494908407]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.83.am |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$72$ |
$[72, 6912, 573048, 47471616, 3939095592, 326939929344, 27136041100632, 2252292150325248, 186940255106561544, 15516041192064652032]$ |
$72$ |
$[72, 6912, 573048, 47471616, 3939095592, 326939929344, 27136041100632, 2252292150325248, 186940255106561544, 15516041192064652032]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-47}) \) |
$C_2$ |
simple |
| 1.83.al |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$73$ |
$[73, 6935, 573196, 47470075, 3939053063, 326939534480, 27136040731061, 2252292188922675, 186940255643621428, 15516041194929703175]$ |
$73$ |
$[73, 6935, 573196, 47470075, 3939053063, 326939534480, 27136040731061, 2252292188922675, 186940255643621428, 15516041194929703175]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-211}) \) |
$C_2$ |
simple |
| 1.83.ak |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$74$ |
$[74, 6956, 573278, 47467744, 3939011194, 326939296844, 27136042668718, 2252292238281600, 186940256019601514, 15516041194216632236]$ |
$74$ |
$[74, 6956, 573278, 47467744, 3939011194, 326939296844, 27136042668718, 2252292238281600, 186940256019601514, 15516041194216632236]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-58}) \) |
$C_2$ |
simple |
| 1.83.aj |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$75$ |
$[75, 6975, 573300, 47464875, 3938974125, 326939230800, 27136046227575, 2252292284113875, 186940256130564300, 15516041190659157375]$ |
$75$ |
$[75, 6975, 573300, 47464875, 3938974125, 326939230800, 27136046227575, 2252292284113875, 186940256130564300, 15516041190659157375]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-251}) \) |
$C_2$ |
simple |
| 1.83.ai |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$76$ |
$[76, 6992, 573268, 47461696, 3938944796, 326939326544, 27136050570404, 2252292315671808, 186940255970598124, 15516041185897095632]$ |
$76$ |
$[76, 6992, 573268, 47461696, 3938944796, 326939326544, 27136050570404, 2252292315671808, 186940255970598124, 15516041185897095632]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.83.ah |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$77$ |
$[77, 7007, 573188, 47458411, 3938925067, 326939556944, 27136054867537, 2252292327047763, 186940255610035004, 15516041181725891807]$ |
$77$ |
$[77, 7007, 573188, 47458411, 3938925067, 326939556944, 27136054867537, 2252292327047763, 186940255610035004, 15516041181725891807]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.83.ag |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$78$ |
$[78, 7020, 573066, 47455200, 3938915838, 326939883660, 27136058410266, 2252292317308800, 186940255162645998, 15516041179507397100]$ |
$78$ |
$[78, 7020, 573066, 47455200, 3938915838, 326939883660, 27136058410266, 2252292317308800, 186940255162645998, 15516041179507397100]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-74}) \) |
$C_2$ |
simple |
| 1.83.af |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$79$ |
$[79, 7031, 572908, 47452219, 3938917169, 326940262544, 27136060683923, 2252292289809075, 186940254751264084, 15516041179837859111]$ |
$79$ |
$[79, 7031, 572908, 47452219, 3938917169, 326940262544, 27136060683923, 2252292289809075, 186940254751264084, 15516041179837859111]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
| 1.83.ae |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$80$ |
$[80, 7040, 572720, 47449600, 3938928400, 326940648320, 27136061405680, 2252292250982400, 186940254478381520, 15516041182485219200]$ |
$80$ |
$[80, 7040, 572720, 47449600, 3938928400, 326940648320, 27136061405680, 2252292250982400, 186940254478381520, 15516041182485219200]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-79}) \) |
$C_2$ |
simple |
| 1.83.ad |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$81$ |
$[81, 7047, 572508, 47447451, 3938948271, 326940998544, 27136060532109, 2252292208877043, 186940254405728484, 15516041186551163607]$ |
$81$ |
$[81, 7047, 572508, 47447451, 3938948271, 326940998544, 27136060532109, 2252292208877043, 186940254405728484, 15516041186551163607]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-323}) \) |
$C_2$ |
simple |
| 1.83.ac |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$82$ |
$[82, 7052, 572278, 47445856, 3938975042, 326941276844, 27136058241542, 2252292171654528, 186940254544662514, 15516041190780312332]$ |
$82$ |
$[82, 7052, 572278, 47445856, 3938975042, 326941276844, 27136058241542, 2252292171654528, 186940254544662514, 15516041190780312332]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-82}) \) |
$C_2$ |
simple |
| 1.83.ab |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$83$ |
$[83, 7055, 572036, 47444875, 3939006613, 326941455440, 27136054896271, 2252292146233875, 186940254857383868, 15516041193925825775]$ |
$83$ |
$[83, 7055, 572036, 47444875, 3939006613, 326941455440, 27136054896271, 2252292146233875, 186940254857383868, 15516041193925825775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.83.a |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 83 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$84$ |
$[84, 7056, 571788, 47444544, 3939040644, 326941516944, 27136050989628, 2252292137222400, 186940255267540404, 15516041195083934736]$ |
$84$ |
$[84, 7056, 571788, 47444544, 3939040644, 326941516944, 27136050989628, 2252292137222400, 186940255267540404, 15516041195083934736]$ |
$12$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-83}) \) |
$C_2$ |
simple |
| 1.83.b |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$85$ |
$[85, 7055, 571540, 47444875, 3939074675, 326941455440, 27136047082985, 2252292146233875, 186940255677696940, 15516041193925825775]$ |
$85$ |
$[85, 7055, 571540, 47444875, 3939074675, 326941455440, 27136047082985, 2252292146233875, 186940255677696940, 15516041193925825775]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-331}) \) |
$C_2$ |
simple |
| 1.83.c |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$86$ |
$[86, 7052, 571298, 47445856, 3939106246, 326941276844, 27136043737714, 2252292171654528, 186940255990418294, 15516041190780312332]$ |
$86$ |
$[86, 7052, 571298, 47445856, 3939106246, 326941276844, 27136043737714, 2252292171654528, 186940255990418294, 15516041190780312332]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-82}) \) |
$C_2$ |
simple |
| 1.83.d |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$87$ |
$[87, 7047, 571068, 47447451, 3939133017, 326940998544, 27136041447147, 2252292208877043, 186940256129352324, 15516041186551163607]$ |
$87$ |
$[87, 7047, 571068, 47447451, 3939133017, 326940998544, 27136041447147, 2252292208877043, 186940256129352324, 15516041186551163607]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-323}) \) |
$C_2$ |
simple |
| 1.83.e |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$88$ |
$[88, 7040, 570856, 47449600, 3939152888, 326940648320, 27136040573576, 2252292250982400, 186940256056699288, 15516041182485219200]$ |
$88$ |
$[88, 7040, 570856, 47449600, 3939152888, 326940648320, 27136040573576, 2252292250982400, 186940256056699288, 15516041182485219200]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-79}) \) |
$C_2$ |
simple |
| 1.83.f |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$89$ |
$[89, 7031, 570668, 47452219, 3939164119, 326940262544, 27136041295333, 2252292289809075, 186940255783816724, 15516041179837859111]$ |
$89$ |
$[89, 7031, 570668, 47452219, 3939164119, 326940262544, 27136041295333, 2252292289809075, 186940255783816724, 15516041179837859111]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-307}) \) |
$C_2$ |
simple |
| 1.83.g |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$90$ |
$[90, 7020, 570510, 47455200, 3939165450, 326939883660, 27136043568990, 2252292317308800, 186940255372434810, 15516041179507397100]$ |
$90$ |
$[90, 7020, 570510, 47455200, 3939165450, 326939883660, 27136043568990, 2252292317308800, 186940255372434810, 15516041179507397100]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-74}) \) |
$C_2$ |
simple |
| 1.83.h |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$91$ |
$[91, 7007, 570388, 47458411, 3939156221, 326939556944, 27136047111719, 2252292327047763, 186940254925045804, 15516041181725891807]$ |
$91$ |
$[91, 7007, 570388, 47458411, 3939156221, 326939556944, 27136047111719, 2252292327047763, 186940254925045804, 15516041181725891807]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.83.i |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$92$ |
$[92, 6992, 570308, 47461696, 3939136492, 326939326544, 27136051408852, 2252292315671808, 186940254564482684, 15516041185897095632]$ |
$92$ |
$[92, 6992, 570308, 47461696, 3939136492, 326939326544, 27136051408852, 2252292315671808, 186940254564482684, 15516041185897095632]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.83.j |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$93$ |
$[93, 6975, 570276, 47464875, 3939107163, 326939230800, 27136055751681, 2252292284113875, 186940254404516508, 15516041190659157375]$ |
$93$ |
$[93, 6975, 570276, 47464875, 3939107163, 326939230800, 27136055751681, 2252292284113875, 186940254404516508, 15516041190659157375]$ |
$7$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-251}) \) |
$C_2$ |
simple |
| 1.83.k |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$94$ |
$[94, 6956, 570298, 47467744, 3939070094, 326939296844, 27136059310538, 2252292238281600, 186940254515479294, 15516041194216632236]$ |
$94$ |
$[94, 6956, 570298, 47467744, 3939070094, 326939296844, 27136059310538, 2252292238281600, 186940254515479294, 15516041194216632236]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-58}) \) |
$C_2$ |
simple |
| 1.83.l |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$95$ |
$[95, 6935, 570380, 47470075, 3939028225, 326939534480, 27136061248195, 2252292188922675, 186940254891459380, 15516041194929703175]$ |
$95$ |
$[95, 6935, 570380, 47470075, 3939028225, 326939534480, 27136061248195, 2252292188922675, 186940254891459380, 15516041194929703175]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-211}) \) |
$C_2$ |
simple |
| 1.83.m |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$96$ |
$[96, 6912, 570528, 47471616, 3938985696, 326939929344, 27136060878624, 2252292150325248, 186940255428519264, 15516041192064652032]$ |
$96$ |
$[96, 6912, 570528, 47471616, 3938985696, 326939929344, 27136060878624, 2252292150325248, 186940255428519264, 15516041192064652032]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-47}) \) |
$C_2$ |
simple |
| 1.83.n |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$97$ |
$[97, 6887, 570748, 47472091, 3938947967, 326940435344, 27136057876157, 2252292137470323, 186940255926651844, 15516041186494908407]$ |
$97$ |
$[97, 6887, 570748, 47472091, 3938947967, 326940435344, 27136057876157, 2252292137470323, 186940255926651844, 15516041186494908407]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-163}) \) |
$C_2$ |
simple |
| 1.83.o |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$98$ |
$[98, 6860, 571046, 47471200, 3938921938, 326940966380, 27136052540086, 2252292161212800, 186940256131819778, 15516041180992820300]$ |
$98$ |
$[98, 6860, 571046, 47471200, 3938921938, 326940966380, 27136052540086, 2252292161212800, 186940256131819778, 15516041180992820300]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-34}) \) |
$C_2$ |
simple |
| 1.83.p |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$99$ |
$[99, 6831, 571428, 47468619, 3938916069, 326941387344, 27136046119743, 2252292221027475, 186940255838414364, 15516041179565004111]$ |
$99$ |
$[99, 6831, 571428, 47468619, 3938916069, 326941387344, 27136046119743, 2252292221027475, 186940255838414364, 15516041179565004111]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-107}) \) |
$C_2$ |
simple |
| 1.83.q |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$100$ |
$[100, 6800, 571900, 47464000, 3938940500, 326941504400, 27136041205100, 2252292294816000, 186940255076824900, 15516041185055114000]$ |
$100$ |
$[100, 6800, 571900, 47464000, 3938940500, 326941504400, 27136041205100, 2252292294816000, 186940255076824900, 15516041185055114000]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.83.r |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$101$ |
$[101, 6767, 572468, 47456971, 3939007171, 326941054544, 27136042187929, 2252292325230483, 186940254415526924, 15516041193963493007]$ |
$101$ |
$[101, 6767, 572468, 47456971, 3939007171, 326941054544, 27136042187929, 2252292325230483, 186940254415526924, 15516041193963493007]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.83.s |
$1$ |
$\F_{83}$ |
$83$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 83 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$102$ |
$[102, 6732, 573138, 47447136, 3939129942, 326939694444, 27136055798562, 2252292201929088, 186940255412178054, 15516041187109801932]$ |
$102$ |
$[102, 6732, 573138, 47447136, 3939129942, 326939694444, 27136055798562, 2252292201929088, 186940255412178054, 15516041187109801932]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |