Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 6 x + 83 x^{2}$ |
| Frobenius angles: | $\pm0.606810309697$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-74}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $90$ | $7020$ | $570510$ | $47455200$ | $3939165450$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $7020$ | $570510$ | $47455200$ | $3939165450$ | $326939883660$ | $27136043568990$ | $2252292317308800$ | $186940255372434810$ | $15516041179507397100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+39 x+39$
- $y^2=x^3+6 x+12$
- $y^2=x^3+10 x+20$
- $y^2=x^3+42 x+42$
- $y^2=x^3+8 x+8$
- $y^2=x^3+36 x+72$
- $y^2=x^3+55 x+55$
- $y^2=x^3+42 x+1$
- $y^2=x^3+65 x+47$
- $y^2=x^3+x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-74}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.83.ag | $2$ | (not in LMFDB) |