Properties

Label 1.83.ag
Base Field $\F_{83}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{83}$
Dimension:  $1$
L-polynomial:  $1 - 6 x + 83 x^{2}$
Frobenius angles:  $\pm0.393189690303$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-74}) \)
Galois group:  $C_2$
Jacobians:  10

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 10 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 78 7020 573066 47455200 3938915838 326939883660 27136058410266 2252292317308800 186940255162645998 15516041179507397100

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 78 7020 573066 47455200 3938915838 326939883660 27136058410266 2252292317308800 186940255162645998 15516041179507397100

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-74}) \).
All geometric endomorphisms are defined over $\F_{83}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.83.g$2$(not in LMFDB)