Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 9 x + 83 x^{2}$ |
| Frobenius angles: | $\pm0.335556542753$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-251}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $7$ |
| Isomorphism classes: | 7 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $75$ | $6975$ | $573300$ | $47464875$ | $3938974125$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $75$ | $6975$ | $573300$ | $47464875$ | $3938974125$ | $326939230800$ | $27136046227575$ | $2252292284113875$ | $186940256130564300$ | $15516041190659157375$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 7 curves (of which 0 are hyperelliptic):
- $y^2=x^3+47 x+11$
- $y^2=x^3+69 x+69$
- $y^2=x^3+28 x+56$
- $y^2=x^3+13 x+13$
- $y^2=x^3+44 x+5$
- $y^2=x^3+66 x+66$
- $y^2=x^3+25 x+50$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-251}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.83.j | $2$ | (not in LMFDB) |