Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 12 x + 83 x^{2}$ |
| Frobenius angles: | $\pm0.728844936469$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-47}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $96$ | $6912$ | $570528$ | $47471616$ | $3938985696$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $96$ | $6912$ | $570528$ | $47471616$ | $3938985696$ | $326939929344$ | $27136060878624$ | $2252292150325248$ | $186940255428519264$ | $15516041192064652032$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+31 x+62$
- $y^2=x^3+74 x+65$
- $y^2=x^3+54 x+54$
- $y^2=x^3+30 x+30$
- $y^2=x^3+59 x+35$
- $y^2=x^3+29 x+58$
- $y^2=x^3+46 x+9$
- $y^2=x^3+62 x+41$
- $y^2=x^3+41 x+82$
- $y^2=x^3+45 x+45$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-47}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.83.am | $2$ | (not in LMFDB) |