Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 11 x + 83 x^{2}$ |
| Frobenius angles: | $\pm0.706308884932$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-211}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $3$ |
| Isomorphism classes: | 3 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $95$ | $6935$ | $570380$ | $47470075$ | $3939028225$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $95$ | $6935$ | $570380$ | $47470075$ | $3939028225$ | $326939534480$ | $27136061248195$ | $2252292188922675$ | $186940254891459380$ | $15516041194929703175$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 0 are hyperelliptic):
- $y^2=x^3+29 x+29$
- $y^2=x^3+18 x+36$
- $y^2=x^3+49 x+49$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-211}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.83.al | $2$ | (not in LMFDB) |