Properties

Label 1.83.q
Base field $\F_{83}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $1$
L-polynomial:  $1 + 16 x + 83 x^{2}$
Frobenius angles:  $\pm0.841198311973$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-19}) \)
Galois group:  $C_2$
Jacobians:  $4$
Isomorphism classes:  4
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $100$ $6800$ $571900$ $47464000$ $3938940500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $100$ $6800$ $571900$ $47464000$ $3938940500$ $326941504400$ $27136041205100$ $2252292294816000$ $186940255076824900$ $15516041185055114000$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-19}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.83.aq$2$(not in LMFDB)