Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
12.0.271...125.1 x12x11+53x1011x9+1303x8+438x7+18804x6+9784x5+170686x4+49088x3+900838x2+99987x+2139101x^{12} - x^{11} + 53 x^{10} - 11 x^{9} + 1303 x^{8} + 438 x^{7} + 18804 x^{6} + 9784 x^{5} + 170686 x^{4} + 49088 x^{3} + 900838 x^{2} + 99987 x + 2139101 59781765^{9}\cdot 7^{8}\cdot 17^{6} C12C_{12} (as 12T1) [962][962] 104.882003477104.882003477
12.12.133...125.1 x12x11152x10+151x9+8594x88443x7228593x6+234291x5+2932130x43275066x315786160x2+17913708x+16784881x^{12} - x^{11} - 152 x^{10} + 151 x^{9} + 8594 x^{8} - 8443 x^{7} - 228593 x^{6} + 234291 x^{5} + 2932130 x^{4} - 3275066 x^{3} - 15786160 x^{2} + 17913708 x + 16784881 597101765^{9}\cdot 7^{10}\cdot 17^{6} C12C_{12} (as 12T1) [2][2] 6790562.470536790562.47053
12.0.384...125.1 x12x11+45x1015x9+1141x8+680x7+18214x6+13740x5+178606x4+104830x3+1201400x2+851959x+4264781x^{12} - x^{11} + 45 x^{10} - 15 x^{9} + 1141 x^{8} + 680 x^{7} + 18214 x^{6} + 13740 x^{5} + 178606 x^{4} + 104830 x^{3} + 1201400 x^{2} + 851959 x + 4264781 591381765^{9}\cdot 13^{8}\cdot 17^{6} C12C_{12} (as 12T1) [2,10,130][2, 10, 130] 615.54450504615.54450504
12.12.198...125.1 x12x11202x10+74x9+15753x8+1798x7599316x6252696x5+11554141x4+6283413x3104562232x245628823x+334724041x^{12} - x^{11} - 202 x^{10} + 74 x^{9} + 15753 x^{8} + 1798 x^{7} - 599316 x^{6} - 252696 x^{5} + 11554141 x^{4} + 6283413 x^{3} - 104562232 x^{2} - 45628823 x + 334724041 3659781763^{6}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6} C12C_{12} (as 12T1) [2][2] 18345440.839518345440.8395
12.0.800...125.1 x12x11+37x10+21x9+997x8+268x7+16408x6+7328x5+208512x4219292x3+2113070x21950049x+6498881x^{12} - x^{11} + 37 x^{10} + 21 x^{9} + 997 x^{8} + 268 x^{7} + 16408 x^{6} + 7328 x^{5} + 208512 x^{4} - 219292 x^{3} + 2113070 x^{2} - 1950049 x + 6498881 591761985^{9}\cdot 17^{6}\cdot 19^{8} C12C_{12} (as 12T1) [2834][2834] 1234.551632611234.55163261
12.12.111...000.1 x124x11257x10+874x9+25914x871452x71309383x6+2723614x5+34749905x447923684x3453217430x2+304232502x+2215713361x^{12} - 4 x^{11} - 257 x^{10} + 874 x^{9} + 25914 x^{8} - 71452 x^{7} - 1309383 x^{6} + 2723614 x^{5} + 34749905 x^{4} - 47923684 x^{3} - 453217430 x^{2} + 304232502 x + 2215713361 21259781762^{12}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6} C12C_{12} (as 12T1) [2][2] 54495459.065754495459.0657
12.0.429...997.1 x12x11+150x10+168x9+6499x8+17779x7+113305x6+399401x5+930866x4+2425574x3+5043531x2+4720833x+2845051x^{12} - x^{11} + 150 x^{10} + 168 x^{9} + 6499 x^{8} + 17779 x^{7} + 113305 x^{6} + 399401 x^{5} + 930866 x^{4} + 2425574 x^{3} + 5043531 x^{2} + 4720833 x + 2845051 176371117^{6}\cdot 37^{11} C12C_{12} (as 12T1) [19546][19546] 2518.233240492518.23324049
12.0.649...125.1 x12x11+270x10275x9+20801x824235x7+615964x6658945x5+8871411x43368575x3+65405755x2+15856409x+249089881x^{12} - x^{11} + 270 x^{10} - 275 x^{9} + 20801 x^{8} - 24235 x^{7} + 615964 x^{6} - 658945 x^{5} + 8871411 x^{4} - 3368575 x^{3} + 65405755 x^{2} + 15856409 x + 249089881 5913101765^{9}\cdot 13^{10}\cdot 17^{6} C12C_{12} (as 12T1) [2,2,2,5746][2, 2, 2, 5746] 615.54450504615.54450504
12.0.970...125.1 x12x11+443x10444x9+72854x873298x7+5685112x66113764x5+223464715x4256778386x3+4246142315x24044668347x+31633408171x^{12} - x^{11} + 443 x^{10} - 444 x^{9} + 72854 x^{8} - 73298 x^{7} + 5685112 x^{6} - 6113764 x^{5} + 223464715 x^{4} - 256778386 x^{3} + 4246142315 x^{2} - 4044668347 x + 31633408171 36597101763^{6}\cdot 5^{9}\cdot 7^{10}\cdot 17^{6} C12C_{12} (as 12T1) [2,2,35906][2, 2, 35906] 104.882003477104.882003477
12.12.280...125.1 x12x11210x10+70x9+16611x8+1360x7624896x6200970x5+11417901x4+4551265x390501020x223480651x+233001991x^{12} - x^{11} - 210 x^{10} + 70 x^{9} + 16611 x^{8} + 1360 x^{7} - 624896 x^{6} - 200970 x^{5} + 11417901 x^{4} + 4551265 x^{3} - 90501020 x^{2} - 23480651 x + 233001991 36591381763^{6}\cdot 5^{9}\cdot 13^{8}\cdot 17^{6} C12C_{12} (as 12T1) [2][2] 427202136.726427202136.726
12.0.402...125.1 x12x11+21x10+33x9+898x8+137x7+14950x6+14307x5+235426x4424511x3+3757769x22920010x+16177451x^{12} - x^{11} + 21 x^{10} + 33 x^{9} + 898 x^{8} + 137 x^{7} + 14950 x^{6} + 14307 x^{5} + 235426 x^{4} - 424511 x^{3} + 3757769 x^{2} - 2920010 x + 16177451 591763185^{9}\cdot 17^{6}\cdot 31^{8} C12C_{12} (as 12T1) [11714][11714] 4882.160216514882.16021651
12.0.545...000.1 x12+595x10+131495x8+13756400x6+716192575x4+17393248250x2+147842610125x^{12} + 595 x^{10} + 131495 x^{8} + 13756400 x^{6} + 716192575 x^{4} + 17393248250 x^{2} + 147842610125 212597101762^{12}\cdot 5^{9}\cdot 7^{10}\cdot 17^{6} C12C_{12} (as 12T1) [2,2,201994][2, 2, 201994] 104.882003477104.882003477
12.0.712...000.1 x124x11+508x101676x9+104199x8273412x7+10968102x621538616x5+623909300x4819565924x3+18410523340x212257477028x+222965992201x^{12} - 4 x^{11} + 508 x^{10} - 1676 x^{9} + 104199 x^{8} - 273412 x^{7} + 10968102 x^{6} - 21538616 x^{5} + 623909300 x^{4} - 819565924 x^{3} + 18410523340 x^{2} - 12257477028 x + 222965992201 21859781762^{18}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6} C12C_{12} (as 12T1) [18,16866][18, 16866] 104.882003477104.882003477
12.12.712...000.1 x124x11512x10+1724x9+103859x8281572x710644338x6+21700544x5+578712080x4784199124x315736799340x2+10519199812x+166108823761x^{12} - 4 x^{11} - 512 x^{10} + 1724 x^{9} + 103859 x^{8} - 281572 x^{7} - 10644338 x^{6} + 21700544 x^{5} + 578712080 x^{4} - 784199124 x^{3} - 15736799340 x^{2} + 10519199812 x + 166108823761 21859781762^{18}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6} C12C_{12} (as 12T1) [2][2] 320040330.009320040330.009
12.12.844...625.1 x12x11285x10+285x9+27236x833450x71015091x6+1882750x5+13705706x436747465x337348115x2+178599199x130101919x^{12} - x^{11} - 285 x^{10} + 285 x^{9} + 27236 x^{8} - 33450 x^{7} - 1015091 x^{6} + 1882750 x^{5} + 13705706 x^{4} - 36747465 x^{3} - 37348115 x^{2} + 178599199 x - 130101919 5913111765^{9}\cdot 13^{11}\cdot 17^{6} C12C_{12} (as 12T1) [2,2][2, 2] 544261614.045544261614.045
12.12.844...625.2 x12x11285x10+285x9+27236x86930x71152111x6702950x5+20667206x4+25065130x3101392810x259815601x+123164081x^{12} - x^{11} - 285 x^{10} + 285 x^{9} + 27236 x^{8} - 6930 x^{7} - 1152111 x^{6} - 702950 x^{5} + 20667206 x^{4} + 25065130 x^{3} - 101392810 x^{2} - 59815601 x + 123164081 5913111765^{9}\cdot 13^{11}\cdot 17^{6} C12C_{12} (as 12T1) [2,10][2, 10] 101052811.273101052811.273
20.10.447...552.1 x204x19192x18368x17+5900x16+11612x1582376x14147412x13+496249x12+5837552x11+28472784x10+9581508x9257955946x8848288280x7488954264x6+5231676656x5+10164474572x46966146992x322153914848x25610833232x+1443605144x^{20} - 4 x^{19} - 192 x^{18} - 368 x^{17} + 5900 x^{16} + 11612 x^{15} - 82376 x^{14} - 147412 x^{13} + 496249 x^{12} + 5837552 x^{11} + 28472784 x^{10} + 9581508 x^{9} - 257955946 x^{8} - 848288280 x^{7} - 488954264 x^{6} + 5231676656 x^{5} + 10164474572 x^{4} - 6966146992 x^{3} - 22153914848 x^{2} - 5610833232 x + 1443605144 2381782358818-\,2^{38}\cdot 17^{8}\cdot 23^{5}\cdot 881^{8} C28.(S3×A5)C_2^8.(S_3\times A_5) (as 20T754) trivial 1209661546570000000012096615465700000000
24.0.177...625.3 x24x2320x22+20x21+320x20219x194901x18+14901x17+60299x16248180x15836019x14+3276519x13+13401461x1239585781x1130241579x10+249183880x9136356881x8463267559x7+1148300059x613723758699x5+13110121180x4+71729555620x3174821473680x2220712110521x+1061520150601x^{24} - x^{23} - 20 x^{22} + 20 x^{21} + 320 x^{20} - 219 x^{19} - 4901 x^{18} + 14901 x^{17} + 60299 x^{16} - 248180 x^{15} - 836019 x^{14} + 3276519 x^{13} + 13401461 x^{12} - 39585781 x^{11} - 30241579 x^{10} + 249183880 x^{9} - 136356881 x^{8} - 463267559 x^{7} + 1148300059 x^{6} - 13723758699 x^{5} + 13110121180 x^{4} + 71729555620 x^{3} - 174821473680 x^{2} - 220712110521 x + 1061520150601 51872017125^{18}\cdot 7^{20}\cdot 17^{12} C2×C12C_2\times C_{12} (as 24T2) not computed
  displayed columns for results