Normalized defining polynomial
\( x^{12} - 4 x^{11} - 512 x^{10} + 1724 x^{9} + 103859 x^{8} - 281572 x^{7} - 10644338 x^{6} + \cdots + 166108823761 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(71243920337289728000000000\) \(\medspace = 2^{18}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(142.69\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}5^{3/4}7^{2/3}17^{1/2}\approx 142.69069418206897$ | ||
Ramified primes: | \(2\), \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(4760=2^{3}\cdot 5\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{4760}(1563,·)$, $\chi_{4760}(1,·)$, $\chi_{4760}(67,·)$, $\chi_{4760}(1089,·)$, $\chi_{4760}(4489,·)$, $\chi_{4760}(2923,·)$, $\chi_{4760}(681,·)$, $\chi_{4760}(883,·)$, $\chi_{4760}(2787,·)$, $\chi_{4760}(2041,·)$, $\chi_{4760}(3809,·)$, $\chi_{4760}(3467,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{34}a^{6}-\frac{1}{17}a^{5}-\frac{3}{34}a^{4}+\frac{3}{17}a^{3}+\frac{1}{17}a^{2}-\frac{2}{17}a+\frac{1}{34}$, $\frac{1}{34}a^{7}-\frac{7}{34}a^{5}+\frac{7}{17}a^{3}-\frac{7}{34}a+\frac{1}{17}$, $\frac{1}{34}a^{8}-\frac{7}{17}a^{5}-\frac{7}{34}a^{4}+\frac{4}{17}a^{3}+\frac{7}{34}a^{2}+\frac{4}{17}a+\frac{7}{34}$, $\frac{1}{34}a^{9}-\frac{1}{34}a^{5}-\frac{11}{34}a^{3}+\frac{1}{17}a^{2}-\frac{15}{34}a+\frac{7}{17}$, $\frac{1}{2284464069154}a^{10}-\frac{6835828908}{1142232034577}a^{9}-\frac{1023632705}{1142232034577}a^{8}-\frac{23973522013}{2284464069154}a^{7}+\frac{8169254499}{1142232034577}a^{6}-\frac{606723253077}{2284464069154}a^{5}+\frac{201818572927}{1142232034577}a^{4}+\frac{530099055905}{1142232034577}a^{3}+\frac{1135441172327}{2284464069154}a^{2}+\frac{1119593369553}{2284464069154}a+\frac{986520148179}{2284464069154}$, $\frac{1}{16\!\cdots\!14}a^{11}-\frac{38966485463362}{81\!\cdots\!57}a^{10}-\frac{91\!\cdots\!59}{95\!\cdots\!42}a^{9}+\frac{63\!\cdots\!08}{81\!\cdots\!57}a^{8}+\frac{19\!\cdots\!37}{16\!\cdots\!14}a^{7}+\frac{14\!\cdots\!97}{16\!\cdots\!14}a^{6}+\frac{65\!\cdots\!84}{81\!\cdots\!57}a^{5}-\frac{48\!\cdots\!47}{16\!\cdots\!14}a^{4}+\frac{36\!\cdots\!36}{81\!\cdots\!57}a^{3}+\frac{31\!\cdots\!85}{81\!\cdots\!57}a^{2}+\frac{17\!\cdots\!65}{16\!\cdots\!14}a-\frac{27\!\cdots\!93}{68\!\cdots\!26}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{14}{1142232034577}a^{11}+\frac{14925}{1142232034577}a^{10}-\frac{56715}{1142232034577}a^{9}-\frac{12888435}{2284464069154}a^{8}+\frac{18617800}{1142232034577}a^{7}+\frac{1027042051}{1142232034577}a^{6}-\frac{2186714138}{1142232034577}a^{5}-\frac{148881072825}{2284464069154}a^{4}+\frac{104317889180}{1142232034577}a^{3}+\frac{4901710840301}{2284464069154}a^{2}-\frac{1678580195734}{1142232034577}a-\frac{3670084781255}{134380239362}$, $\frac{48\!\cdots\!40}{47\!\cdots\!21}a^{11}-\frac{59\!\cdots\!26}{47\!\cdots\!21}a^{10}-\frac{19\!\cdots\!60}{47\!\cdots\!21}a^{9}+\frac{27\!\cdots\!50}{47\!\cdots\!21}a^{8}+\frac{26\!\cdots\!20}{47\!\cdots\!21}a^{7}-\frac{49\!\cdots\!30}{47\!\cdots\!21}a^{6}-\frac{14\!\cdots\!80}{47\!\cdots\!21}a^{5}+\frac{40\!\cdots\!95}{47\!\cdots\!21}a^{4}+\frac{20\!\cdots\!40}{47\!\cdots\!21}a^{3}-\frac{15\!\cdots\!60}{47\!\cdots\!21}a^{2}+\frac{25\!\cdots\!20}{47\!\cdots\!21}a+\frac{87\!\cdots\!89}{20\!\cdots\!39}$, $\frac{77\!\cdots\!60}{47\!\cdots\!21}a^{11}+\frac{14\!\cdots\!30}{47\!\cdots\!21}a^{10}-\frac{34\!\cdots\!00}{47\!\cdots\!21}a^{9}-\frac{11\!\cdots\!65}{47\!\cdots\!21}a^{8}+\frac{57\!\cdots\!80}{47\!\cdots\!21}a^{7}+\frac{29\!\cdots\!70}{47\!\cdots\!21}a^{6}-\frac{44\!\cdots\!44}{47\!\cdots\!21}a^{5}-\frac{31\!\cdots\!75}{47\!\cdots\!21}a^{4}+\frac{16\!\cdots\!60}{47\!\cdots\!21}a^{3}+\frac{13\!\cdots\!20}{47\!\cdots\!21}a^{2}-\frac{21\!\cdots\!00}{47\!\cdots\!21}a-\frac{86\!\cdots\!35}{20\!\cdots\!39}$, $\frac{13\!\cdots\!94}{81\!\cdots\!57}a^{11}+\frac{13\!\cdots\!35}{81\!\cdots\!57}a^{10}-\frac{62\!\cdots\!15}{81\!\cdots\!57}a^{9}-\frac{13\!\cdots\!45}{16\!\cdots\!14}a^{8}+\frac{11\!\cdots\!60}{81\!\cdots\!57}a^{7}+\frac{12\!\cdots\!81}{81\!\cdots\!57}a^{6}-\frac{91\!\cdots\!06}{81\!\cdots\!57}a^{5}-\frac{21\!\cdots\!75}{16\!\cdots\!14}a^{4}+\frac{34\!\cdots\!00}{81\!\cdots\!57}a^{3}+\frac{81\!\cdots\!21}{16\!\cdots\!14}a^{2}-\frac{47\!\cdots\!94}{81\!\cdots\!57}a-\frac{28\!\cdots\!15}{40\!\cdots\!78}$, $\frac{21\!\cdots\!26}{81\!\cdots\!57}a^{11}-\frac{18\!\cdots\!57}{81\!\cdots\!57}a^{10}-\frac{87\!\cdots\!05}{81\!\cdots\!57}a^{9}+\frac{14\!\cdots\!25}{16\!\cdots\!14}a^{8}+\frac{12\!\cdots\!00}{81\!\cdots\!57}a^{7}-\frac{10\!\cdots\!11}{81\!\cdots\!57}a^{6}-\frac{84\!\cdots\!50}{81\!\cdots\!57}a^{5}+\frac{13\!\cdots\!05}{16\!\cdots\!14}a^{4}+\frac{23\!\cdots\!20}{81\!\cdots\!57}a^{3}-\frac{40\!\cdots\!01}{16\!\cdots\!14}a^{2}-\frac{19\!\cdots\!66}{81\!\cdots\!57}a+\frac{11\!\cdots\!53}{40\!\cdots\!78}$, $\frac{40\!\cdots\!29}{81\!\cdots\!57}a^{11}-\frac{10\!\cdots\!63}{16\!\cdots\!14}a^{10}-\frac{32\!\cdots\!25}{16\!\cdots\!14}a^{9}+\frac{41\!\cdots\!55}{16\!\cdots\!14}a^{8}+\frac{23\!\cdots\!05}{81\!\cdots\!57}a^{7}-\frac{31\!\cdots\!39}{81\!\cdots\!57}a^{6}-\frac{30\!\cdots\!43}{16\!\cdots\!14}a^{5}+\frac{42\!\cdots\!35}{16\!\cdots\!14}a^{4}+\frac{88\!\cdots\!05}{16\!\cdots\!14}a^{3}-\frac{65\!\cdots\!62}{81\!\cdots\!57}a^{2}-\frac{11\!\cdots\!15}{16\!\cdots\!14}a+\frac{33\!\cdots\!19}{34\!\cdots\!63}$, $\frac{38\!\cdots\!11}{81\!\cdots\!57}a^{11}-\frac{10\!\cdots\!13}{16\!\cdots\!14}a^{10}-\frac{30\!\cdots\!99}{16\!\cdots\!14}a^{9}+\frac{41\!\cdots\!21}{16\!\cdots\!14}a^{8}+\frac{22\!\cdots\!03}{81\!\cdots\!57}a^{7}-\frac{30\!\cdots\!77}{81\!\cdots\!57}a^{6}-\frac{27\!\cdots\!17}{16\!\cdots\!14}a^{5}+\frac{42\!\cdots\!45}{16\!\cdots\!14}a^{4}+\frac{74\!\cdots\!07}{16\!\cdots\!14}a^{3}-\frac{65\!\cdots\!20}{81\!\cdots\!57}a^{2}-\frac{67\!\cdots\!53}{16\!\cdots\!14}a+\frac{30\!\cdots\!17}{34\!\cdots\!63}$, $\frac{66\!\cdots\!17}{16\!\cdots\!14}a^{11}-\frac{59\!\cdots\!69}{16\!\cdots\!14}a^{10}-\frac{18\!\cdots\!91}{95\!\cdots\!42}a^{9}+\frac{13\!\cdots\!02}{81\!\cdots\!57}a^{8}+\frac{55\!\cdots\!35}{16\!\cdots\!14}a^{7}-\frac{22\!\cdots\!01}{81\!\cdots\!57}a^{6}-\frac{23\!\cdots\!68}{81\!\cdots\!57}a^{5}+\frac{18\!\cdots\!15}{81\!\cdots\!57}a^{4}+\frac{95\!\cdots\!90}{81\!\cdots\!57}a^{3}-\frac{14\!\cdots\!31}{16\!\cdots\!14}a^{2}-\frac{29\!\cdots\!79}{16\!\cdots\!14}a+\frac{89\!\cdots\!83}{68\!\cdots\!26}$, $\frac{13\!\cdots\!93}{16\!\cdots\!14}a^{11}-\frac{13\!\cdots\!65}{16\!\cdots\!14}a^{10}-\frac{29\!\cdots\!37}{81\!\cdots\!57}a^{9}+\frac{29\!\cdots\!44}{81\!\cdots\!57}a^{8}+\frac{97\!\cdots\!11}{16\!\cdots\!14}a^{7}-\frac{97\!\cdots\!73}{16\!\cdots\!14}a^{6}-\frac{44\!\cdots\!09}{95\!\cdots\!42}a^{5}+\frac{75\!\cdots\!05}{16\!\cdots\!14}a^{4}+\frac{26\!\cdots\!93}{16\!\cdots\!14}a^{3}-\frac{26\!\cdots\!43}{16\!\cdots\!14}a^{2}-\frac{15\!\cdots\!79}{81\!\cdots\!57}a+\frac{69\!\cdots\!84}{34\!\cdots\!63}$, $\frac{58\!\cdots\!67}{16\!\cdots\!14}a^{11}+\frac{10\!\cdots\!76}{81\!\cdots\!57}a^{10}-\frac{14\!\cdots\!11}{81\!\cdots\!57}a^{9}-\frac{11\!\cdots\!61}{16\!\cdots\!14}a^{8}+\frac{26\!\cdots\!84}{81\!\cdots\!57}a^{7}+\frac{11\!\cdots\!27}{81\!\cdots\!57}a^{6}-\frac{23\!\cdots\!89}{81\!\cdots\!57}a^{5}-\frac{21\!\cdots\!57}{16\!\cdots\!14}a^{4}+\frac{18\!\cdots\!41}{16\!\cdots\!14}a^{3}+\frac{91\!\cdots\!79}{16\!\cdots\!14}a^{2}-\frac{26\!\cdots\!15}{16\!\cdots\!14}a-\frac{33\!\cdots\!27}{40\!\cdots\!78}$, $\frac{14\!\cdots\!36}{81\!\cdots\!57}a^{11}+\frac{10\!\cdots\!45}{81\!\cdots\!57}a^{10}-\frac{62\!\cdots\!91}{81\!\cdots\!57}a^{9}-\frac{85\!\cdots\!43}{16\!\cdots\!14}a^{8}+\frac{98\!\cdots\!93}{81\!\cdots\!57}a^{7}+\frac{66\!\cdots\!35}{81\!\cdots\!57}a^{6}-\frac{72\!\cdots\!81}{81\!\cdots\!57}a^{5}-\frac{96\!\cdots\!79}{16\!\cdots\!14}a^{4}+\frac{24\!\cdots\!35}{81\!\cdots\!57}a^{3}+\frac{32\!\cdots\!55}{16\!\cdots\!14}a^{2}-\frac{31\!\cdots\!71}{81\!\cdots\!57}a-\frac{16\!\cdots\!73}{68\!\cdots\!26}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 320040330.009 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 320040330.009 \cdot 2}{2\cdot\sqrt{71243920337289728000000000}}\cr\approx \mathstrut & 0.155306900638 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.4.2312000.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | R | R | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.18.27 | $x^{12} + 24 x^{11} + 300 x^{10} + 2480 x^{9} + 15084 x^{8} + 70848 x^{7} + 263968 x^{6} + 785280 x^{5} + 1858672 x^{4} + 3423104 x^{3} + 4742336 x^{2} + 4511488 x + 2639680$ | $2$ | $6$ | $18$ | $C_{12}$ | $[3]^{6}$ |
\(5\) | 5.12.9.2 | $x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(7\) | 7.12.8.1 | $x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.6.2 | $x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |