Normalized defining polynomial
\( x^{12} - x^{11} + 150 x^{10} + 168 x^{9} + 6499 x^{8} + 17779 x^{7} + 113305 x^{6} + 399401 x^{5} + \cdots + 2845051 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(4294498872017628501555997\) \(\medspace = 17^{6}\cdot 37^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(112.91\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $17^{1/2}37^{11/12}\approx 112.9126779663512$ | ||
Ramified primes: | \(17\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{37}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(629=17\cdot 37\) | ||
Dirichlet character group: | $\lbrace$$\chi_{629}(288,·)$, $\chi_{629}(1,·)$, $\chi_{629}(443,·)$, $\chi_{629}(356,·)$, $\chi_{629}(545,·)$, $\chi_{629}(137,·)$, $\chi_{629}(458,·)$, $\chi_{629}(526,·)$, $\chi_{629}(528,·)$, $\chi_{629}(339,·)$, $\chi_{629}(307,·)$, $\chi_{629}(475,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.14638717.1$^{2}$, 12.0.4294498872017628501555997.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{11}a^{7}+\frac{5}{11}a^{6}-\frac{2}{11}a^{5}+\frac{5}{11}a^{4}-\frac{5}{11}a^{3}+\frac{1}{11}a^{2}-\frac{5}{11}a$, $\frac{1}{11}a^{8}-\frac{5}{11}a^{6}+\frac{4}{11}a^{5}+\frac{3}{11}a^{4}+\frac{4}{11}a^{3}+\frac{1}{11}a^{2}+\frac{3}{11}a$, $\frac{1}{33}a^{9}+\frac{1}{33}a^{8}-\frac{1}{33}a^{7}+\frac{8}{33}a^{6}-\frac{4}{11}a^{5}-\frac{2}{11}a^{4}-\frac{5}{11}a^{3}+\frac{8}{33}a^{2}-\frac{2}{11}a+\frac{1}{3}$, $\frac{1}{33}a^{10}+\frac{1}{33}a^{8}-\frac{14}{33}a^{6}+\frac{1}{11}a^{5}-\frac{4}{11}a^{4}+\frac{14}{33}a^{3}+\frac{13}{33}a^{2}+\frac{5}{33}a-\frac{1}{3}$, $\frac{1}{12\!\cdots\!99}a^{11}+\frac{46\!\cdots\!73}{41\!\cdots\!33}a^{10}-\frac{43\!\cdots\!67}{12\!\cdots\!99}a^{9}+\frac{46\!\cdots\!92}{12\!\cdots\!99}a^{8}-\frac{23\!\cdots\!12}{41\!\cdots\!33}a^{7}+\frac{39\!\cdots\!58}{12\!\cdots\!99}a^{6}+\frac{22\!\cdots\!71}{41\!\cdots\!33}a^{5}-\frac{19\!\cdots\!61}{12\!\cdots\!99}a^{4}+\frac{38\!\cdots\!31}{12\!\cdots\!99}a^{3}-\frac{95\!\cdots\!41}{26\!\cdots\!17}a^{2}-\frac{22\!\cdots\!61}{12\!\cdots\!99}a-\frac{16\!\cdots\!04}{23\!\cdots\!47}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $11$ |
Class group and class number
$C_{19546}$, which has order $19546$ (assuming GRH)
Relative class number: $19546$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{66\!\cdots\!00}{12\!\cdots\!99}a^{11}-\frac{63\!\cdots\!14}{41\!\cdots\!33}a^{10}+\frac{10\!\cdots\!00}{12\!\cdots\!99}a^{9}-\frac{78\!\cdots\!95}{12\!\cdots\!99}a^{8}+\frac{13\!\cdots\!15}{41\!\cdots\!33}a^{7}+\frac{32\!\cdots\!35}{12\!\cdots\!99}a^{6}+\frac{17\!\cdots\!58}{41\!\cdots\!33}a^{5}+\frac{10\!\cdots\!45}{12\!\cdots\!99}a^{4}+\frac{10\!\cdots\!85}{12\!\cdots\!99}a^{3}+\frac{10\!\cdots\!15}{26\!\cdots\!17}a^{2}+\frac{50\!\cdots\!42}{12\!\cdots\!99}a-\frac{39\!\cdots\!88}{23\!\cdots\!47}$, $\frac{19\!\cdots\!60}{12\!\cdots\!99}a^{11}-\frac{61\!\cdots\!25}{12\!\cdots\!99}a^{10}+\frac{29\!\cdots\!93}{12\!\cdots\!99}a^{9}-\frac{31\!\cdots\!30}{12\!\cdots\!99}a^{8}+\frac{41\!\cdots\!21}{41\!\cdots\!33}a^{7}+\frac{25\!\cdots\!58}{41\!\cdots\!33}a^{6}+\frac{56\!\cdots\!61}{41\!\cdots\!33}a^{5}+\frac{37\!\cdots\!46}{12\!\cdots\!99}a^{4}+\frac{18\!\cdots\!66}{41\!\cdots\!33}a^{3}+\frac{50\!\cdots\!87}{26\!\cdots\!17}a^{2}+\frac{80\!\cdots\!81}{41\!\cdots\!33}a-\frac{34\!\cdots\!64}{79\!\cdots\!49}$, $\frac{11\!\cdots\!49}{11\!\cdots\!09}a^{11}-\frac{12\!\cdots\!26}{33\!\cdots\!73}a^{10}+\frac{17\!\cdots\!33}{11\!\cdots\!09}a^{9}-\frac{81\!\cdots\!36}{37\!\cdots\!03}a^{8}+\frac{70\!\cdots\!24}{11\!\cdots\!09}a^{7}+\frac{64\!\cdots\!65}{37\!\cdots\!03}a^{6}+\frac{27\!\cdots\!88}{37\!\cdots\!03}a^{5}+\frac{15\!\cdots\!67}{11\!\cdots\!09}a^{4}+\frac{34\!\cdots\!23}{11\!\cdots\!09}a^{3}+\frac{12\!\cdots\!68}{23\!\cdots\!47}a^{2}+\frac{60\!\cdots\!17}{11\!\cdots\!09}a-\frac{47\!\cdots\!47}{72\!\cdots\!59}$, $\frac{66\!\cdots\!21}{12\!\cdots\!99}a^{11}-\frac{16\!\cdots\!87}{12\!\cdots\!99}a^{10}+\frac{34\!\cdots\!10}{41\!\cdots\!33}a^{9}-\frac{46\!\cdots\!42}{12\!\cdots\!99}a^{8}+\frac{47\!\cdots\!99}{12\!\cdots\!99}a^{7}+\frac{18\!\cdots\!43}{41\!\cdots\!33}a^{6}+\frac{26\!\cdots\!93}{41\!\cdots\!33}a^{5}+\frac{19\!\cdots\!09}{12\!\cdots\!99}a^{4}+\frac{50\!\cdots\!45}{12\!\cdots\!99}a^{3}+\frac{36\!\cdots\!39}{26\!\cdots\!17}a^{2}+\frac{17\!\cdots\!56}{12\!\cdots\!99}a+\frac{33\!\cdots\!51}{79\!\cdots\!49}$, $\frac{32\!\cdots\!98}{37\!\cdots\!03}a^{11}-\frac{25\!\cdots\!72}{10\!\cdots\!19}a^{10}+\frac{14\!\cdots\!94}{11\!\cdots\!09}a^{9}-\frac{42\!\cdots\!20}{37\!\cdots\!03}a^{8}+\frac{62\!\cdots\!46}{11\!\cdots\!09}a^{7}+\frac{49\!\cdots\!10}{11\!\cdots\!09}a^{6}+\frac{30\!\cdots\!56}{37\!\cdots\!03}a^{5}+\frac{67\!\cdots\!93}{37\!\cdots\!03}a^{4}+\frac{36\!\cdots\!03}{11\!\cdots\!09}a^{3}+\frac{30\!\cdots\!32}{23\!\cdots\!47}a^{2}+\frac{14\!\cdots\!14}{11\!\cdots\!09}a+\frac{89\!\cdots\!88}{21\!\cdots\!77}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2518.23324049 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 2518.23324049 \cdot 19546}{2\cdot\sqrt{4294498872017628501555997}}\cr\approx \mathstrut & 0.730712967737 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{37}) \), 3.3.1369.1, 4.0.14638717.1, 6.6.69343957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | ${\href{/padicField/3.3.0.1}{3} }^{4}$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.1.0.1}{1} }^{12}$ | ${\href{/padicField/13.12.0.1}{12} }$ | R | ${\href{/padicField/19.12.0.1}{12} }$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.1.0.1}{1} }^{12}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\) | 17.12.6.2 | $x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(37\) | 37.12.11.1 | $x^{12} + 407$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |