Properties

Label 12.0.712...000.1
Degree $12$
Signature $[0, 6]$
Discriminant $7.124\times 10^{25}$
Root discriminant \(142.69\)
Ramified primes $2,5,7,17$
Class number $303588$ (GRH)
Class group [18, 16866] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 508*x^10 - 1676*x^9 + 104199*x^8 - 273412*x^7 + 10968102*x^6 - 21538616*x^5 + 623909300*x^4 - 819565924*x^3 + 18410523340*x^2 - 12257477028*x + 222965992201)
 
gp: K = bnfinit(y^12 - 4*y^11 + 508*y^10 - 1676*y^9 + 104199*y^8 - 273412*y^7 + 10968102*y^6 - 21538616*y^5 + 623909300*y^4 - 819565924*y^3 + 18410523340*y^2 - 12257477028*y + 222965992201, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 508*x^10 - 1676*x^9 + 104199*x^8 - 273412*x^7 + 10968102*x^6 - 21538616*x^5 + 623909300*x^4 - 819565924*x^3 + 18410523340*x^2 - 12257477028*x + 222965992201);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 508*x^10 - 1676*x^9 + 104199*x^8 - 273412*x^7 + 10968102*x^6 - 21538616*x^5 + 623909300*x^4 - 819565924*x^3 + 18410523340*x^2 - 12257477028*x + 222965992201)
 

\( x^{12} - 4 x^{11} + 508 x^{10} - 1676 x^{9} + 104199 x^{8} - 273412 x^{7} + 10968102 x^{6} + \cdots + 222965992201 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(71243920337289728000000000\) \(\medspace = 2^{18}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(142.69\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{3/4}7^{2/3}17^{1/2}\approx 142.69069418206897$
Ramified primes:   \(2\), \(5\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4760=2^{3}\cdot 5\cdot 7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{4760}(1,·)$, $\chi_{4760}(2277,·)$, $\chi_{4760}(1089,·)$, $\chi_{4760}(4453,·)$, $\chi_{4760}(4489,·)$, $\chi_{4760}(3637,·)$, $\chi_{4760}(373,·)$, $\chi_{4760}(681,·)$, $\chi_{4760}(2041,·)$, $\chi_{4760}(3809,·)$, $\chi_{4760}(1597,·)$, $\chi_{4760}(1733,·)$$\rbrace$
This is a CM field.
Reflex fields:  4.0.2312000.1$^{2}$, 12.0.71243920337289728000000000.1$^{30}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{34}a^{6}-\frac{1}{17}a^{5}-\frac{3}{34}a^{4}+\frac{3}{17}a^{3}+\frac{1}{17}a^{2}-\frac{2}{17}a+\frac{1}{34}$, $\frac{1}{34}a^{7}-\frac{7}{34}a^{5}+\frac{7}{17}a^{3}-\frac{7}{34}a+\frac{1}{17}$, $\frac{1}{34}a^{8}-\frac{7}{17}a^{5}-\frac{7}{34}a^{4}+\frac{4}{17}a^{3}+\frac{7}{34}a^{2}+\frac{4}{17}a+\frac{7}{34}$, $\frac{1}{34}a^{9}-\frac{1}{34}a^{5}-\frac{11}{34}a^{3}+\frac{1}{17}a^{2}-\frac{15}{34}a+\frac{7}{17}$, $\frac{1}{13301139930674}a^{10}+\frac{93927102345}{13301139930674}a^{9}-\frac{25133222697}{6650569965337}a^{8}+\frac{20855390959}{6650569965337}a^{7}-\frac{123026019705}{13301139930674}a^{6}-\frac{4017015355575}{13301139930674}a^{5}-\frac{6353606372165}{13301139930674}a^{4}+\frac{1508051930957}{13301139930674}a^{3}+\frac{856442981325}{13301139930674}a^{2}+\frac{4905201814491}{13301139930674}a+\frac{2678224099164}{6650569965337}$, $\frac{1}{11\!\cdots\!74}a^{11}+\frac{146131140508290}{58\!\cdots\!37}a^{10}+\frac{11\!\cdots\!86}{58\!\cdots\!37}a^{9}-\frac{82\!\cdots\!68}{58\!\cdots\!37}a^{8}-\frac{38\!\cdots\!23}{58\!\cdots\!37}a^{7}-\frac{76\!\cdots\!81}{11\!\cdots\!74}a^{6}-\frac{10\!\cdots\!85}{58\!\cdots\!37}a^{5}+\frac{32\!\cdots\!61}{11\!\cdots\!74}a^{4}+\frac{50\!\cdots\!39}{11\!\cdots\!74}a^{3}-\frac{24\!\cdots\!00}{58\!\cdots\!37}a^{2}-\frac{54\!\cdots\!09}{11\!\cdots\!74}a-\frac{33\!\cdots\!65}{11\!\cdots\!74}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{18}\times C_{16866}$, which has order $303588$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $303588$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{14}{6650569965337}a^{11}+\frac{19685}{6650569965337}a^{10}-\frac{59095}{6650569965337}a^{9}+\frac{16472945}{13301139930674}a^{8}-\frac{20605280}{6650569965337}a^{7}+\frac{1302319991}{6650569965337}a^{6}-\frac{2475898418}{6650569965337}a^{5}+\frac{190990224595}{13301139930674}a^{4}-\frac{122102252780}{6650569965337}a^{3}+\frac{6719856863321}{13301139930674}a^{2}-\frac{2189974499014}{6650569965337}a+\frac{6736440811337}{782419995922}$, $\frac{12\!\cdots\!20}{34\!\cdots\!61}a^{11}-\frac{26\!\cdots\!10}{34\!\cdots\!61}a^{10}+\frac{58\!\cdots\!20}{34\!\cdots\!61}a^{9}-\frac{12\!\cdots\!15}{34\!\cdots\!61}a^{8}+\frac{10\!\cdots\!40}{34\!\cdots\!61}a^{7}-\frac{23\!\cdots\!90}{34\!\cdots\!61}a^{6}+\frac{91\!\cdots\!04}{34\!\cdots\!61}a^{5}-\frac{20\!\cdots\!25}{34\!\cdots\!61}a^{4}+\frac{38\!\cdots\!80}{34\!\cdots\!61}a^{3}-\frac{86\!\cdots\!40}{34\!\cdots\!61}a^{2}+\frac{62\!\cdots\!20}{34\!\cdots\!61}a-\frac{14\!\cdots\!95}{34\!\cdots\!61}$, $\frac{51\!\cdots\!20}{34\!\cdots\!61}a^{11}+\frac{20\!\cdots\!46}{34\!\cdots\!61}a^{10}+\frac{13\!\cdots\!60}{34\!\cdots\!61}a^{9}+\frac{10\!\cdots\!30}{34\!\cdots\!61}a^{8}+\frac{10\!\cdots\!40}{34\!\cdots\!61}a^{7}+\frac{20\!\cdots\!10}{34\!\cdots\!61}a^{6}-\frac{23\!\cdots\!60}{34\!\cdots\!61}a^{5}+\frac{19\!\cdots\!05}{34\!\cdots\!61}a^{4}-\frac{21\!\cdots\!40}{34\!\cdots\!61}a^{3}+\frac{84\!\cdots\!00}{34\!\cdots\!61}a^{2}-\frac{55\!\cdots\!20}{34\!\cdots\!61}a+\frac{14\!\cdots\!49}{34\!\cdots\!61}$, $\frac{86\!\cdots\!26}{58\!\cdots\!37}a^{11}+\frac{17\!\cdots\!97}{58\!\cdots\!37}a^{10}+\frac{27\!\cdots\!15}{58\!\cdots\!37}a^{9}+\frac{21\!\cdots\!75}{11\!\cdots\!74}a^{8}+\frac{19\!\cdots\!60}{58\!\cdots\!37}a^{7}+\frac{24\!\cdots\!79}{58\!\cdots\!37}a^{6}-\frac{17\!\cdots\!02}{58\!\cdots\!37}a^{5}+\frac{49\!\cdots\!75}{11\!\cdots\!74}a^{4}-\frac{26\!\cdots\!00}{58\!\cdots\!37}a^{3}+\frac{22\!\cdots\!79}{11\!\cdots\!74}a^{2}-\frac{75\!\cdots\!26}{58\!\cdots\!37}a+\frac{23\!\cdots\!61}{68\!\cdots\!22}$, $\frac{30\!\cdots\!66}{58\!\cdots\!37}a^{11}-\frac{28\!\cdots\!73}{58\!\cdots\!37}a^{10}+\frac{12\!\cdots\!55}{58\!\cdots\!37}a^{9}-\frac{21\!\cdots\!35}{11\!\cdots\!74}a^{8}+\frac{19\!\cdots\!40}{58\!\cdots\!37}a^{7}-\frac{15\!\cdots\!51}{58\!\cdots\!37}a^{6}+\frac{13\!\cdots\!66}{58\!\cdots\!37}a^{5}-\frac{20\!\cdots\!75}{11\!\cdots\!74}a^{4}+\frac{39\!\cdots\!60}{58\!\cdots\!37}a^{3}-\frac{65\!\cdots\!81}{11\!\cdots\!74}a^{2}+\frac{29\!\cdots\!14}{58\!\cdots\!37}a-\frac{57\!\cdots\!29}{68\!\cdots\!22}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 104.882003477 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 104.882003477 \cdot 303588}{2\cdot\sqrt{71243920337289728000000000}}\cr\approx \mathstrut & 0.116054206267 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 508*x^10 - 1676*x^9 + 104199*x^8 - 273412*x^7 + 10968102*x^6 - 21538616*x^5 + 623909300*x^4 - 819565924*x^3 + 18410523340*x^2 - 12257477028*x + 222965992201)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 + 508*x^10 - 1676*x^9 + 104199*x^8 - 273412*x^7 + 10968102*x^6 - 21538616*x^5 + 623909300*x^4 - 819565924*x^3 + 18410523340*x^2 - 12257477028*x + 222965992201, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 + 508*x^10 - 1676*x^9 + 104199*x^8 - 273412*x^7 + 10968102*x^6 - 21538616*x^5 + 623909300*x^4 - 819565924*x^3 + 18410523340*x^2 - 12257477028*x + 222965992201);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 508*x^10 - 1676*x^9 + 104199*x^8 - 273412*x^7 + 10968102*x^6 - 21538616*x^5 + 623909300*x^4 - 819565924*x^3 + 18410523340*x^2 - 12257477028*x + 222965992201);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.2312000.1, 6.6.300125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }$ R R ${\href{/padicField/11.3.0.1}{3} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{3}$ R ${\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.12.0.1}{12} }$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.12.0.1}{12} }$ ${\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.4.0.1}{4} }^{3}$ ${\href{/padicField/47.12.0.1}{12} }$ ${\href{/padicField/53.12.0.1}{12} }$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.18.28$x^{12} + 12 x^{11} + 128 x^{10} + 1032 x^{9} + 8068 x^{8} + 54752 x^{7} + 298816 x^{6} + 1148736 x^{5} + 2948656 x^{4} + 4481984 x^{3} + 2851584 x^{2} - 296320 x + 1412800$$2$$6$$18$$C_{12}$$[3]^{6}$
\(5\) Copy content Toggle raw display 5.12.9.2$x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
\(7\) Copy content Toggle raw display 7.12.8.1$x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
\(17\) Copy content Toggle raw display 17.12.6.2$x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$