Normalized defining polynomial
\( x^{12} - x^{11} + 37 x^{10} + 21 x^{9} + 997 x^{8} + 268 x^{7} + 16408 x^{6} + 7328 x^{5} + \cdots + 6498881 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(800667821812475251953125\) \(\medspace = 5^{9}\cdot 17^{6}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(98.16\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}17^{1/2}19^{2/3}\approx 98.16447869097495$ | ||
Ramified primes: | \(5\), \(17\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1615=5\cdot 17\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1615}(1,·)$, $\chi_{1615}(324,·)$, $\chi_{1615}(1223,·)$, $\chi_{1615}(1512,·)$, $\chi_{1615}(239,·)$, $\chi_{1615}(596,·)$, $\chi_{1615}(577,·)$, $\chi_{1615}(919,·)$, $\chi_{1615}(628,·)$, $\chi_{1615}(1531,·)$, $\chi_{1615}(1597,·)$, $\chi_{1615}(543,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.36125.1$^{2}$, 12.0.800667821812475251953125.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{29}a^{9}+\frac{12}{29}a^{8}-\frac{2}{29}a^{7}-\frac{5}{29}a^{6}-\frac{4}{29}a^{5}-\frac{9}{29}a^{4}+\frac{6}{29}a^{3}+\frac{4}{29}a^{2}+\frac{9}{29}a+\frac{14}{29}$, $\frac{1}{29}a^{10}-\frac{1}{29}a^{8}-\frac{10}{29}a^{7}-\frac{2}{29}a^{6}+\frac{10}{29}a^{5}-\frac{2}{29}a^{4}-\frac{10}{29}a^{3}-\frac{10}{29}a^{2}-\frac{7}{29}a+\frac{6}{29}$, $\frac{1}{23\!\cdots\!79}a^{11}+\frac{27\!\cdots\!32}{23\!\cdots\!79}a^{10}+\frac{51\!\cdots\!27}{23\!\cdots\!79}a^{9}-\frac{46\!\cdots\!66}{23\!\cdots\!79}a^{8}+\frac{74\!\cdots\!00}{23\!\cdots\!79}a^{7}+\frac{63\!\cdots\!56}{23\!\cdots\!79}a^{6}-\frac{44\!\cdots\!11}{23\!\cdots\!79}a^{5}+\frac{30\!\cdots\!63}{23\!\cdots\!79}a^{4}-\frac{57\!\cdots\!13}{23\!\cdots\!79}a^{3}+\frac{25\!\cdots\!28}{23\!\cdots\!79}a^{2}-\frac{79\!\cdots\!25}{23\!\cdots\!79}a+\frac{39\!\cdots\!02}{23\!\cdots\!79}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2834}$, which has order $2834$ (assuming GRH)
Relative class number: $2834$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{199820045643}{13\!\cdots\!09}a^{11}-\frac{65123645552}{47\!\cdots\!21}a^{10}-\frac{2034072231238}{13\!\cdots\!09}a^{9}-\frac{49857659840661}{13\!\cdots\!09}a^{8}-\frac{73530676700122}{13\!\cdots\!09}a^{7}-\frac{18\!\cdots\!26}{13\!\cdots\!09}a^{6}-\frac{30\!\cdots\!73}{13\!\cdots\!09}a^{5}-\frac{18\!\cdots\!56}{13\!\cdots\!09}a^{4}-\frac{12\!\cdots\!63}{13\!\cdots\!09}a^{3}-\frac{23\!\cdots\!85}{13\!\cdots\!09}a^{2}+\frac{14\!\cdots\!93}{13\!\cdots\!09}a-\frac{14\!\cdots\!94}{13\!\cdots\!09}$, $\frac{17\!\cdots\!95}{80\!\cdots\!51}a^{11}+\frac{49\!\cdots\!10}{80\!\cdots\!51}a^{10}+\frac{58\!\cdots\!70}{80\!\cdots\!51}a^{9}+\frac{23\!\cdots\!75}{80\!\cdots\!51}a^{8}+\frac{17\!\cdots\!80}{80\!\cdots\!51}a^{7}+\frac{54\!\cdots\!80}{80\!\cdots\!51}a^{6}+\frac{26\!\cdots\!29}{80\!\cdots\!51}a^{5}+\frac{77\!\cdots\!45}{80\!\cdots\!51}a^{4}+\frac{30\!\cdots\!25}{80\!\cdots\!51}a^{3}+\frac{34\!\cdots\!95}{80\!\cdots\!51}a^{2}+\frac{12\!\cdots\!40}{80\!\cdots\!51}a+\frac{38\!\cdots\!57}{80\!\cdots\!51}$, $\frac{22\!\cdots\!95}{80\!\cdots\!51}a^{11}+\frac{58\!\cdots\!66}{80\!\cdots\!51}a^{10}+\frac{78\!\cdots\!70}{80\!\cdots\!51}a^{9}+\frac{27\!\cdots\!30}{80\!\cdots\!51}a^{8}+\frac{23\!\cdots\!20}{80\!\cdots\!51}a^{7}+\frac{65\!\cdots\!50}{80\!\cdots\!51}a^{6}+\frac{35\!\cdots\!63}{80\!\cdots\!51}a^{5}+\frac{88\!\cdots\!00}{80\!\cdots\!51}a^{4}+\frac{42\!\cdots\!75}{80\!\cdots\!51}a^{3}+\frac{34\!\cdots\!70}{80\!\cdots\!51}a^{2}+\frac{17\!\cdots\!05}{80\!\cdots\!51}a+\frac{20\!\cdots\!46}{80\!\cdots\!51}$, $\frac{18\!\cdots\!87}{23\!\cdots\!79}a^{11}+\frac{65\!\cdots\!49}{23\!\cdots\!79}a^{10}+\frac{74\!\cdots\!34}{23\!\cdots\!79}a^{9}+\frac{27\!\cdots\!83}{23\!\cdots\!79}a^{8}+\frac{25\!\cdots\!00}{23\!\cdots\!79}a^{7}+\frac{64\!\cdots\!45}{23\!\cdots\!79}a^{6}+\frac{41\!\cdots\!96}{23\!\cdots\!79}a^{5}+\frac{84\!\cdots\!74}{23\!\cdots\!79}a^{4}+\frac{48\!\cdots\!09}{23\!\cdots\!79}a^{3}+\frac{39\!\cdots\!58}{23\!\cdots\!79}a^{2}+\frac{18\!\cdots\!73}{23\!\cdots\!79}a+\frac{53\!\cdots\!87}{23\!\cdots\!79}$, $\frac{33\!\cdots\!34}{23\!\cdots\!79}a^{11}-\frac{62\!\cdots\!41}{23\!\cdots\!79}a^{10}+\frac{28\!\cdots\!42}{80\!\cdots\!51}a^{9}+\frac{37\!\cdots\!30}{23\!\cdots\!79}a^{8}+\frac{24\!\cdots\!75}{23\!\cdots\!79}a^{7}-\frac{94\!\cdots\!36}{23\!\cdots\!79}a^{6}+\frac{27\!\cdots\!29}{23\!\cdots\!79}a^{5}+\frac{21\!\cdots\!56}{23\!\cdots\!79}a^{4}+\frac{50\!\cdots\!61}{23\!\cdots\!79}a^{3}-\frac{78\!\cdots\!52}{23\!\cdots\!79}a^{2}+\frac{31\!\cdots\!50}{23\!\cdots\!79}a-\frac{33\!\cdots\!99}{23\!\cdots\!79}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1234.55163261 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1234.55163261 \cdot 2834}{2\cdot\sqrt{800667821812475251953125}}\cr\approx \mathstrut & 0.120290721858 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.3.361.1, 4.0.36125.1, 6.6.16290125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | ${\href{/padicField/3.12.0.1}{12} }$ | R | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.12.0.1}{12} }$ | R | R | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.12.9.1 | $x^{12} - 30 x^{8} + 225 x^{4} + 1125$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(17\) | 17.12.6.2 | $x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(19\) | 19.6.4.3 | $x^{6} + 54 x^{5} + 1168 x^{4} + 12926 x^{3} + 104347 x^{2} + 738556 x + 220465$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
19.6.4.3 | $x^{6} + 54 x^{5} + 1168 x^{4} + 12926 x^{3} + 104347 x^{2} + 738556 x + 220465$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |