Properties

Label 12.12.280...125.1
Degree $12$
Signature $[12, 0]$
Discriminant $2.803\times 10^{25}$
Root discriminant \(132.02\)
Ramified primes $3,5,13,17$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 210*x^10 + 70*x^9 + 16611*x^8 + 1360*x^7 - 624896*x^6 - 200970*x^5 + 11417901*x^4 + 4551265*x^3 - 90501020*x^2 - 23480651*x + 233001991)
 
gp: K = bnfinit(y^12 - y^11 - 210*y^10 + 70*y^9 + 16611*y^8 + 1360*y^7 - 624896*y^6 - 200970*y^5 + 11417901*y^4 + 4551265*y^3 - 90501020*y^2 - 23480651*y + 233001991, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - x^11 - 210*x^10 + 70*x^9 + 16611*x^8 + 1360*x^7 - 624896*x^6 - 200970*x^5 + 11417901*x^4 + 4551265*x^3 - 90501020*x^2 - 23480651*x + 233001991);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - x^11 - 210*x^10 + 70*x^9 + 16611*x^8 + 1360*x^7 - 624896*x^6 - 200970*x^5 + 11417901*x^4 + 4551265*x^3 - 90501020*x^2 - 23480651*x + 233001991)
 

\( x^{12} - x^{11} - 210 x^{10} + 70 x^{9} + 16611 x^{8} + 1360 x^{7} - 624896 x^{6} - 200970 x^{5} + \cdots + 233001991 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(28034829169596161173828125\) \(\medspace = 3^{6}\cdot 5^{9}\cdot 13^{8}\cdot 17^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(132.02\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}5^{3/4}13^{2/3}17^{1/2}\approx 132.02053636333846$
Ramified primes:   \(3\), \(5\), \(13\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3315=3\cdot 5\cdot 13\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{3315}(256,·)$, $\chi_{3315}(1,·)$, $\chi_{3315}(1478,·)$, $\chi_{3315}(1223,·)$, $\chi_{3315}(458,·)$, $\chi_{3315}(919,·)$, $\chi_{3315}(3212,·)$, $\chi_{3315}(3214,·)$, $\chi_{3315}(2447,·)$, $\chi_{3315}(664,·)$, $\chi_{3315}(2551,·)$, $\chi_{3315}(152,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{131}a^{9}-\frac{39}{131}a^{8}+\frac{9}{131}a^{7}-\frac{19}{131}a^{6}-\frac{63}{131}a^{5}+\frac{20}{131}a^{4}-\frac{20}{131}a^{3}-\frac{44}{131}a^{2}-\frac{51}{131}a+\frac{2}{131}$, $\frac{1}{131}a^{10}+\frac{60}{131}a^{8}-\frac{61}{131}a^{7}-\frac{18}{131}a^{6}+\frac{52}{131}a^{5}-\frac{26}{131}a^{4}-\frac{38}{131}a^{3}-\frac{64}{131}a^{2}-\frac{22}{131}a-\frac{53}{131}$, $\frac{1}{41\!\cdots\!59}a^{11}+\frac{95\!\cdots\!16}{41\!\cdots\!59}a^{10}-\frac{80\!\cdots\!98}{41\!\cdots\!59}a^{9}+\frac{12\!\cdots\!26}{41\!\cdots\!59}a^{8}+\frac{67\!\cdots\!24}{41\!\cdots\!59}a^{7}+\frac{17\!\cdots\!38}{41\!\cdots\!59}a^{6}-\frac{45\!\cdots\!35}{41\!\cdots\!59}a^{5}+\frac{18\!\cdots\!26}{41\!\cdots\!59}a^{4}-\frac{17\!\cdots\!07}{41\!\cdots\!59}a^{3}-\frac{97\!\cdots\!02}{41\!\cdots\!59}a^{2}+\frac{47\!\cdots\!89}{41\!\cdots\!59}a-\frac{16\!\cdots\!91}{41\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{279906172817}{32\!\cdots\!29}a^{11}+\frac{2993842923683}{32\!\cdots\!29}a^{10}-\frac{59403210336275}{32\!\cdots\!29}a^{9}-\frac{521174098147090}{32\!\cdots\!29}a^{8}+\frac{40\!\cdots\!78}{32\!\cdots\!29}a^{7}+\frac{29\!\cdots\!52}{32\!\cdots\!29}a^{6}-\frac{11\!\cdots\!51}{32\!\cdots\!29}a^{5}-\frac{67\!\cdots\!25}{32\!\cdots\!29}a^{4}+\frac{11\!\cdots\!24}{32\!\cdots\!29}a^{3}+\frac{52\!\cdots\!09}{32\!\cdots\!29}a^{2}-\frac{30\!\cdots\!80}{32\!\cdots\!29}a-\frac{65\!\cdots\!79}{32\!\cdots\!29}$, $\frac{72\!\cdots\!05}{31\!\cdots\!89}a^{11}-\frac{65\!\cdots\!59}{31\!\cdots\!89}a^{10}-\frac{12\!\cdots\!75}{31\!\cdots\!89}a^{9}+\frac{10\!\cdots\!45}{31\!\cdots\!89}a^{8}+\frac{81\!\cdots\!20}{31\!\cdots\!89}a^{7}-\frac{55\!\cdots\!10}{31\!\cdots\!89}a^{6}-\frac{23\!\cdots\!93}{31\!\cdots\!89}a^{5}+\frac{12\!\cdots\!85}{31\!\cdots\!89}a^{4}+\frac{29\!\cdots\!60}{31\!\cdots\!89}a^{3}-\frac{11\!\cdots\!20}{31\!\cdots\!89}a^{2}-\frac{96\!\cdots\!00}{31\!\cdots\!89}a+\frac{28\!\cdots\!59}{31\!\cdots\!89}$, $\frac{69\!\cdots\!20}{31\!\cdots\!89}a^{11}+\frac{19\!\cdots\!20}{31\!\cdots\!89}a^{10}-\frac{12\!\cdots\!60}{31\!\cdots\!89}a^{9}-\frac{46\!\cdots\!55}{31\!\cdots\!89}a^{8}+\frac{71\!\cdots\!40}{31\!\cdots\!89}a^{7}+\frac{33\!\cdots\!10}{31\!\cdots\!89}a^{6}-\frac{16\!\cdots\!86}{31\!\cdots\!89}a^{5}-\frac{90\!\cdots\!55}{31\!\cdots\!89}a^{4}+\frac{14\!\cdots\!30}{31\!\cdots\!89}a^{3}+\frac{89\!\cdots\!65}{31\!\cdots\!89}a^{2}-\frac{61\!\cdots\!95}{31\!\cdots\!89}a-\frac{20\!\cdots\!65}{31\!\cdots\!89}$, $\frac{19\!\cdots\!09}{41\!\cdots\!59}a^{11}+\frac{14\!\cdots\!45}{41\!\cdots\!59}a^{10}-\frac{35\!\cdots\!39}{41\!\cdots\!59}a^{9}-\frac{56\!\cdots\!58}{41\!\cdots\!59}a^{8}+\frac{21\!\cdots\!49}{41\!\cdots\!59}a^{7}+\frac{43\!\cdots\!90}{41\!\cdots\!59}a^{6}-\frac{54\!\cdots\!46}{41\!\cdots\!59}a^{5}-\frac{11\!\cdots\!81}{41\!\cdots\!59}a^{4}+\frac{55\!\cdots\!90}{41\!\cdots\!59}a^{3}+\frac{79\!\cdots\!81}{41\!\cdots\!59}a^{2}-\frac{20\!\cdots\!12}{41\!\cdots\!59}a-\frac{29\!\cdots\!88}{41\!\cdots\!59}$, $\frac{99\!\cdots\!29}{41\!\cdots\!59}a^{11}-\frac{86\!\cdots\!58}{41\!\cdots\!59}a^{10}-\frac{18\!\cdots\!41}{41\!\cdots\!59}a^{9}+\frac{14\!\cdots\!14}{41\!\cdots\!59}a^{8}+\frac{13\!\cdots\!75}{41\!\cdots\!59}a^{7}-\frac{84\!\cdots\!49}{41\!\cdots\!59}a^{6}-\frac{43\!\cdots\!89}{41\!\cdots\!59}a^{5}+\frac{20\!\cdots\!03}{41\!\cdots\!59}a^{4}+\frac{61\!\cdots\!50}{41\!\cdots\!59}a^{3}-\frac{18\!\cdots\!11}{41\!\cdots\!59}a^{2}-\frac{22\!\cdots\!97}{41\!\cdots\!59}a+\frac{54\!\cdots\!85}{41\!\cdots\!59}$, $\frac{10\!\cdots\!01}{41\!\cdots\!59}a^{11}-\frac{27\!\cdots\!75}{41\!\cdots\!59}a^{10}-\frac{25\!\cdots\!45}{41\!\cdots\!59}a^{9}+\frac{37\!\cdots\!10}{41\!\cdots\!59}a^{8}-\frac{94\!\cdots\!56}{41\!\cdots\!59}a^{7}-\frac{16\!\cdots\!16}{41\!\cdots\!59}a^{6}+\frac{58\!\cdots\!03}{41\!\cdots\!59}a^{5}+\frac{26\!\cdots\!00}{41\!\cdots\!59}a^{4}-\frac{10\!\cdots\!68}{41\!\cdots\!59}a^{3}-\frac{52\!\cdots\!12}{41\!\cdots\!59}a^{2}+\frac{37\!\cdots\!89}{41\!\cdots\!59}a-\frac{32\!\cdots\!55}{41\!\cdots\!59}$, $\frac{15\!\cdots\!79}{41\!\cdots\!59}a^{11}-\frac{25\!\cdots\!27}{41\!\cdots\!59}a^{10}-\frac{80\!\cdots\!65}{41\!\cdots\!59}a^{9}+\frac{33\!\cdots\!55}{41\!\cdots\!59}a^{8}-\frac{87\!\cdots\!94}{41\!\cdots\!59}a^{7}-\frac{13\!\cdots\!70}{41\!\cdots\!59}a^{6}+\frac{69\!\cdots\!05}{41\!\cdots\!59}a^{5}+\frac{17\!\cdots\!00}{41\!\cdots\!59}a^{4}-\frac{14\!\cdots\!42}{41\!\cdots\!59}a^{3}+\frac{36\!\cdots\!30}{41\!\cdots\!59}a^{2}+\frac{93\!\cdots\!18}{41\!\cdots\!59}a-\frac{12\!\cdots\!50}{41\!\cdots\!59}$, $\frac{11\!\cdots\!07}{41\!\cdots\!59}a^{11}-\frac{54\!\cdots\!34}{41\!\cdots\!59}a^{10}-\frac{21\!\cdots\!69}{41\!\cdots\!59}a^{9}+\frac{90\!\cdots\!68}{41\!\cdots\!59}a^{8}+\frac{15\!\cdots\!39}{41\!\cdots\!59}a^{7}-\frac{56\!\cdots\!76}{41\!\cdots\!59}a^{6}-\frac{48\!\cdots\!01}{41\!\cdots\!59}a^{5}+\frac{16\!\cdots\!72}{41\!\cdots\!59}a^{4}+\frac{65\!\cdots\!71}{41\!\cdots\!59}a^{3}-\frac{20\!\cdots\!99}{41\!\cdots\!59}a^{2}-\frac{24\!\cdots\!77}{41\!\cdots\!59}a+\frac{68\!\cdots\!55}{41\!\cdots\!59}$, $\frac{16\!\cdots\!74}{41\!\cdots\!59}a^{11}-\frac{10\!\cdots\!23}{41\!\cdots\!59}a^{10}-\frac{28\!\cdots\!35}{41\!\cdots\!59}a^{9}+\frac{16\!\cdots\!71}{41\!\cdots\!59}a^{8}+\frac{18\!\cdots\!48}{41\!\cdots\!59}a^{7}-\frac{94\!\cdots\!67}{41\!\cdots\!59}a^{6}-\frac{50\!\cdots\!32}{41\!\cdots\!59}a^{5}+\frac{23\!\cdots\!02}{41\!\cdots\!59}a^{4}+\frac{58\!\cdots\!45}{41\!\cdots\!59}a^{3}-\frac{23\!\cdots\!26}{41\!\cdots\!59}a^{2}-\frac{20\!\cdots\!81}{41\!\cdots\!59}a+\frac{71\!\cdots\!15}{41\!\cdots\!59}$, $\frac{24\!\cdots\!07}{41\!\cdots\!59}a^{11}-\frac{18\!\cdots\!48}{41\!\cdots\!59}a^{10}-\frac{40\!\cdots\!54}{41\!\cdots\!59}a^{9}+\frac{27\!\cdots\!53}{41\!\cdots\!59}a^{8}+\frac{23\!\cdots\!81}{41\!\cdots\!59}a^{7}-\frac{14\!\cdots\!05}{41\!\cdots\!59}a^{6}-\frac{61\!\cdots\!65}{41\!\cdots\!59}a^{5}+\frac{34\!\cdots\!95}{41\!\cdots\!59}a^{4}+\frac{67\!\cdots\!97}{41\!\cdots\!59}a^{3}-\frac{31\!\cdots\!99}{41\!\cdots\!59}a^{2}-\frac{23\!\cdots\!87}{41\!\cdots\!59}a+\frac{91\!\cdots\!69}{41\!\cdots\!59}$, $\frac{16\!\cdots\!64}{41\!\cdots\!59}a^{11}-\frac{12\!\cdots\!11}{41\!\cdots\!59}a^{10}-\frac{25\!\cdots\!12}{41\!\cdots\!59}a^{9}+\frac{18\!\cdots\!16}{41\!\cdots\!59}a^{8}+\frac{14\!\cdots\!06}{41\!\cdots\!59}a^{7}-\frac{97\!\cdots\!55}{41\!\cdots\!59}a^{6}-\frac{37\!\cdots\!36}{41\!\cdots\!59}a^{5}+\frac{21\!\cdots\!01}{41\!\cdots\!59}a^{4}+\frac{40\!\cdots\!53}{41\!\cdots\!59}a^{3}-\frac{19\!\cdots\!34}{41\!\cdots\!59}a^{2}-\frac{14\!\cdots\!14}{41\!\cdots\!59}a+\frac{56\!\cdots\!42}{41\!\cdots\!59}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 427202136.726 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 427202136.726 \cdot 2}{2\cdot\sqrt{28034829169596161173828125}}\cr\approx \mathstrut & 0.330479410404 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 210*x^10 + 70*x^9 + 16611*x^8 + 1360*x^7 - 624896*x^6 - 200970*x^5 + 11417901*x^4 + 4551265*x^3 - 90501020*x^2 - 23480651*x + 233001991)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - x^11 - 210*x^10 + 70*x^9 + 16611*x^8 + 1360*x^7 - 624896*x^6 - 200970*x^5 + 11417901*x^4 + 4551265*x^3 - 90501020*x^2 - 23480651*x + 233001991, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - x^11 - 210*x^10 + 70*x^9 + 16611*x^8 + 1360*x^7 - 624896*x^6 - 200970*x^5 + 11417901*x^4 + 4551265*x^3 - 90501020*x^2 - 23480651*x + 233001991);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - x^11 - 210*x^10 + 70*x^9 + 16611*x^8 + 1360*x^7 - 624896*x^6 - 200970*x^5 + 11417901*x^4 + 4551265*x^3 - 90501020*x^2 - 23480651*x + 233001991);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.169.1, 4.4.325125.1, 6.6.3570125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }$ R R ${\href{/padicField/7.12.0.1}{12} }$ ${\href{/padicField/11.3.0.1}{3} }^{4}$ R R ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{6}$ ${\href{/padicField/37.12.0.1}{12} }$ ${\href{/padicField/41.3.0.1}{3} }^{4}$ ${\href{/padicField/43.12.0.1}{12} }$ ${\href{/padicField/47.4.0.1}{4} }^{3}$ ${\href{/padicField/53.4.0.1}{4} }^{3}$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.12.6.1$x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
\(5\) Copy content Toggle raw display 5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
\(13\) Copy content Toggle raw display 13.12.8.1$x^{12} + 9 x^{10} + 88 x^{9} + 33 x^{8} + 216 x^{7} - 1299 x^{6} - 78 x^{5} - 1797 x^{4} - 15494 x^{3} + 21687 x^{2} - 41586 x + 201846$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
\(17\) Copy content Toggle raw display 17.12.6.2$x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$