Normalized defining polynomial
\( x^{12} - x^{11} - 210 x^{10} + 70 x^{9} + 16611 x^{8} + 1360 x^{7} - 624896 x^{6} - 200970 x^{5} + \cdots + 233001991 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(28034829169596161173828125\) \(\medspace = 3^{6}\cdot 5^{9}\cdot 13^{8}\cdot 17^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(132.02\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}5^{3/4}13^{2/3}17^{1/2}\approx 132.02053636333846$ | ||
Ramified primes: | \(3\), \(5\), \(13\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(3315=3\cdot 5\cdot 13\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{3315}(256,·)$, $\chi_{3315}(1,·)$, $\chi_{3315}(1478,·)$, $\chi_{3315}(1223,·)$, $\chi_{3315}(458,·)$, $\chi_{3315}(919,·)$, $\chi_{3315}(3212,·)$, $\chi_{3315}(3214,·)$, $\chi_{3315}(2447,·)$, $\chi_{3315}(664,·)$, $\chi_{3315}(2551,·)$, $\chi_{3315}(152,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{131}a^{9}-\frac{39}{131}a^{8}+\frac{9}{131}a^{7}-\frac{19}{131}a^{6}-\frac{63}{131}a^{5}+\frac{20}{131}a^{4}-\frac{20}{131}a^{3}-\frac{44}{131}a^{2}-\frac{51}{131}a+\frac{2}{131}$, $\frac{1}{131}a^{10}+\frac{60}{131}a^{8}-\frac{61}{131}a^{7}-\frac{18}{131}a^{6}+\frac{52}{131}a^{5}-\frac{26}{131}a^{4}-\frac{38}{131}a^{3}-\frac{64}{131}a^{2}-\frac{22}{131}a-\frac{53}{131}$, $\frac{1}{41\!\cdots\!59}a^{11}+\frac{95\!\cdots\!16}{41\!\cdots\!59}a^{10}-\frac{80\!\cdots\!98}{41\!\cdots\!59}a^{9}+\frac{12\!\cdots\!26}{41\!\cdots\!59}a^{8}+\frac{67\!\cdots\!24}{41\!\cdots\!59}a^{7}+\frac{17\!\cdots\!38}{41\!\cdots\!59}a^{6}-\frac{45\!\cdots\!35}{41\!\cdots\!59}a^{5}+\frac{18\!\cdots\!26}{41\!\cdots\!59}a^{4}-\frac{17\!\cdots\!07}{41\!\cdots\!59}a^{3}-\frac{97\!\cdots\!02}{41\!\cdots\!59}a^{2}+\frac{47\!\cdots\!89}{41\!\cdots\!59}a-\frac{16\!\cdots\!91}{41\!\cdots\!59}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{279906172817}{32\!\cdots\!29}a^{11}+\frac{2993842923683}{32\!\cdots\!29}a^{10}-\frac{59403210336275}{32\!\cdots\!29}a^{9}-\frac{521174098147090}{32\!\cdots\!29}a^{8}+\frac{40\!\cdots\!78}{32\!\cdots\!29}a^{7}+\frac{29\!\cdots\!52}{32\!\cdots\!29}a^{6}-\frac{11\!\cdots\!51}{32\!\cdots\!29}a^{5}-\frac{67\!\cdots\!25}{32\!\cdots\!29}a^{4}+\frac{11\!\cdots\!24}{32\!\cdots\!29}a^{3}+\frac{52\!\cdots\!09}{32\!\cdots\!29}a^{2}-\frac{30\!\cdots\!80}{32\!\cdots\!29}a-\frac{65\!\cdots\!79}{32\!\cdots\!29}$, $\frac{72\!\cdots\!05}{31\!\cdots\!89}a^{11}-\frac{65\!\cdots\!59}{31\!\cdots\!89}a^{10}-\frac{12\!\cdots\!75}{31\!\cdots\!89}a^{9}+\frac{10\!\cdots\!45}{31\!\cdots\!89}a^{8}+\frac{81\!\cdots\!20}{31\!\cdots\!89}a^{7}-\frac{55\!\cdots\!10}{31\!\cdots\!89}a^{6}-\frac{23\!\cdots\!93}{31\!\cdots\!89}a^{5}+\frac{12\!\cdots\!85}{31\!\cdots\!89}a^{4}+\frac{29\!\cdots\!60}{31\!\cdots\!89}a^{3}-\frac{11\!\cdots\!20}{31\!\cdots\!89}a^{2}-\frac{96\!\cdots\!00}{31\!\cdots\!89}a+\frac{28\!\cdots\!59}{31\!\cdots\!89}$, $\frac{69\!\cdots\!20}{31\!\cdots\!89}a^{11}+\frac{19\!\cdots\!20}{31\!\cdots\!89}a^{10}-\frac{12\!\cdots\!60}{31\!\cdots\!89}a^{9}-\frac{46\!\cdots\!55}{31\!\cdots\!89}a^{8}+\frac{71\!\cdots\!40}{31\!\cdots\!89}a^{7}+\frac{33\!\cdots\!10}{31\!\cdots\!89}a^{6}-\frac{16\!\cdots\!86}{31\!\cdots\!89}a^{5}-\frac{90\!\cdots\!55}{31\!\cdots\!89}a^{4}+\frac{14\!\cdots\!30}{31\!\cdots\!89}a^{3}+\frac{89\!\cdots\!65}{31\!\cdots\!89}a^{2}-\frac{61\!\cdots\!95}{31\!\cdots\!89}a-\frac{20\!\cdots\!65}{31\!\cdots\!89}$, $\frac{19\!\cdots\!09}{41\!\cdots\!59}a^{11}+\frac{14\!\cdots\!45}{41\!\cdots\!59}a^{10}-\frac{35\!\cdots\!39}{41\!\cdots\!59}a^{9}-\frac{56\!\cdots\!58}{41\!\cdots\!59}a^{8}+\frac{21\!\cdots\!49}{41\!\cdots\!59}a^{7}+\frac{43\!\cdots\!90}{41\!\cdots\!59}a^{6}-\frac{54\!\cdots\!46}{41\!\cdots\!59}a^{5}-\frac{11\!\cdots\!81}{41\!\cdots\!59}a^{4}+\frac{55\!\cdots\!90}{41\!\cdots\!59}a^{3}+\frac{79\!\cdots\!81}{41\!\cdots\!59}a^{2}-\frac{20\!\cdots\!12}{41\!\cdots\!59}a-\frac{29\!\cdots\!88}{41\!\cdots\!59}$, $\frac{99\!\cdots\!29}{41\!\cdots\!59}a^{11}-\frac{86\!\cdots\!58}{41\!\cdots\!59}a^{10}-\frac{18\!\cdots\!41}{41\!\cdots\!59}a^{9}+\frac{14\!\cdots\!14}{41\!\cdots\!59}a^{8}+\frac{13\!\cdots\!75}{41\!\cdots\!59}a^{7}-\frac{84\!\cdots\!49}{41\!\cdots\!59}a^{6}-\frac{43\!\cdots\!89}{41\!\cdots\!59}a^{5}+\frac{20\!\cdots\!03}{41\!\cdots\!59}a^{4}+\frac{61\!\cdots\!50}{41\!\cdots\!59}a^{3}-\frac{18\!\cdots\!11}{41\!\cdots\!59}a^{2}-\frac{22\!\cdots\!97}{41\!\cdots\!59}a+\frac{54\!\cdots\!85}{41\!\cdots\!59}$, $\frac{10\!\cdots\!01}{41\!\cdots\!59}a^{11}-\frac{27\!\cdots\!75}{41\!\cdots\!59}a^{10}-\frac{25\!\cdots\!45}{41\!\cdots\!59}a^{9}+\frac{37\!\cdots\!10}{41\!\cdots\!59}a^{8}-\frac{94\!\cdots\!56}{41\!\cdots\!59}a^{7}-\frac{16\!\cdots\!16}{41\!\cdots\!59}a^{6}+\frac{58\!\cdots\!03}{41\!\cdots\!59}a^{5}+\frac{26\!\cdots\!00}{41\!\cdots\!59}a^{4}-\frac{10\!\cdots\!68}{41\!\cdots\!59}a^{3}-\frac{52\!\cdots\!12}{41\!\cdots\!59}a^{2}+\frac{37\!\cdots\!89}{41\!\cdots\!59}a-\frac{32\!\cdots\!55}{41\!\cdots\!59}$, $\frac{15\!\cdots\!79}{41\!\cdots\!59}a^{11}-\frac{25\!\cdots\!27}{41\!\cdots\!59}a^{10}-\frac{80\!\cdots\!65}{41\!\cdots\!59}a^{9}+\frac{33\!\cdots\!55}{41\!\cdots\!59}a^{8}-\frac{87\!\cdots\!94}{41\!\cdots\!59}a^{7}-\frac{13\!\cdots\!70}{41\!\cdots\!59}a^{6}+\frac{69\!\cdots\!05}{41\!\cdots\!59}a^{5}+\frac{17\!\cdots\!00}{41\!\cdots\!59}a^{4}-\frac{14\!\cdots\!42}{41\!\cdots\!59}a^{3}+\frac{36\!\cdots\!30}{41\!\cdots\!59}a^{2}+\frac{93\!\cdots\!18}{41\!\cdots\!59}a-\frac{12\!\cdots\!50}{41\!\cdots\!59}$, $\frac{11\!\cdots\!07}{41\!\cdots\!59}a^{11}-\frac{54\!\cdots\!34}{41\!\cdots\!59}a^{10}-\frac{21\!\cdots\!69}{41\!\cdots\!59}a^{9}+\frac{90\!\cdots\!68}{41\!\cdots\!59}a^{8}+\frac{15\!\cdots\!39}{41\!\cdots\!59}a^{7}-\frac{56\!\cdots\!76}{41\!\cdots\!59}a^{6}-\frac{48\!\cdots\!01}{41\!\cdots\!59}a^{5}+\frac{16\!\cdots\!72}{41\!\cdots\!59}a^{4}+\frac{65\!\cdots\!71}{41\!\cdots\!59}a^{3}-\frac{20\!\cdots\!99}{41\!\cdots\!59}a^{2}-\frac{24\!\cdots\!77}{41\!\cdots\!59}a+\frac{68\!\cdots\!55}{41\!\cdots\!59}$, $\frac{16\!\cdots\!74}{41\!\cdots\!59}a^{11}-\frac{10\!\cdots\!23}{41\!\cdots\!59}a^{10}-\frac{28\!\cdots\!35}{41\!\cdots\!59}a^{9}+\frac{16\!\cdots\!71}{41\!\cdots\!59}a^{8}+\frac{18\!\cdots\!48}{41\!\cdots\!59}a^{7}-\frac{94\!\cdots\!67}{41\!\cdots\!59}a^{6}-\frac{50\!\cdots\!32}{41\!\cdots\!59}a^{5}+\frac{23\!\cdots\!02}{41\!\cdots\!59}a^{4}+\frac{58\!\cdots\!45}{41\!\cdots\!59}a^{3}-\frac{23\!\cdots\!26}{41\!\cdots\!59}a^{2}-\frac{20\!\cdots\!81}{41\!\cdots\!59}a+\frac{71\!\cdots\!15}{41\!\cdots\!59}$, $\frac{24\!\cdots\!07}{41\!\cdots\!59}a^{11}-\frac{18\!\cdots\!48}{41\!\cdots\!59}a^{10}-\frac{40\!\cdots\!54}{41\!\cdots\!59}a^{9}+\frac{27\!\cdots\!53}{41\!\cdots\!59}a^{8}+\frac{23\!\cdots\!81}{41\!\cdots\!59}a^{7}-\frac{14\!\cdots\!05}{41\!\cdots\!59}a^{6}-\frac{61\!\cdots\!65}{41\!\cdots\!59}a^{5}+\frac{34\!\cdots\!95}{41\!\cdots\!59}a^{4}+\frac{67\!\cdots\!97}{41\!\cdots\!59}a^{3}-\frac{31\!\cdots\!99}{41\!\cdots\!59}a^{2}-\frac{23\!\cdots\!87}{41\!\cdots\!59}a+\frac{91\!\cdots\!69}{41\!\cdots\!59}$, $\frac{16\!\cdots\!64}{41\!\cdots\!59}a^{11}-\frac{12\!\cdots\!11}{41\!\cdots\!59}a^{10}-\frac{25\!\cdots\!12}{41\!\cdots\!59}a^{9}+\frac{18\!\cdots\!16}{41\!\cdots\!59}a^{8}+\frac{14\!\cdots\!06}{41\!\cdots\!59}a^{7}-\frac{97\!\cdots\!55}{41\!\cdots\!59}a^{6}-\frac{37\!\cdots\!36}{41\!\cdots\!59}a^{5}+\frac{21\!\cdots\!01}{41\!\cdots\!59}a^{4}+\frac{40\!\cdots\!53}{41\!\cdots\!59}a^{3}-\frac{19\!\cdots\!34}{41\!\cdots\!59}a^{2}-\frac{14\!\cdots\!14}{41\!\cdots\!59}a+\frac{56\!\cdots\!42}{41\!\cdots\!59}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 427202136.726 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 427202136.726 \cdot 2}{2\cdot\sqrt{28034829169596161173828125}}\cr\approx \mathstrut & 0.330479410404 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.3.169.1, 4.4.325125.1, 6.6.3570125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | R | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.12.6.1 | $x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(5\) | 5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
\(13\) | 13.12.8.1 | $x^{12} + 9 x^{10} + 88 x^{9} + 33 x^{8} + 216 x^{7} - 1299 x^{6} - 78 x^{5} - 1797 x^{4} - 15494 x^{3} + 21687 x^{2} - 41586 x + 201846$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.6.2 | $x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |