Properties

Label 20.10.447...552.1
Degree $20$
Signature $[10, 5]$
Discriminant $-4.479\times 10^{51}$
Root discriminant \(382.44\)
Ramified primes $2,17,23,881$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^8.(S_3\times A_5)$ (as 20T754)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 - 192*x^18 - 368*x^17 + 5900*x^16 + 11612*x^15 - 82376*x^14 - 147412*x^13 + 496249*x^12 + 5837552*x^11 + 28472784*x^10 + 9581508*x^9 - 257955946*x^8 - 848288280*x^7 - 488954264*x^6 + 5231676656*x^5 + 10164474572*x^4 - 6966146992*x^3 - 22153914848*x^2 - 5610833232*x + 1443605144)
 
gp: K = bnfinit(y^20 - 4*y^19 - 192*y^18 - 368*y^17 + 5900*y^16 + 11612*y^15 - 82376*y^14 - 147412*y^13 + 496249*y^12 + 5837552*y^11 + 28472784*y^10 + 9581508*y^9 - 257955946*y^8 - 848288280*y^7 - 488954264*y^6 + 5231676656*y^5 + 10164474572*y^4 - 6966146992*y^3 - 22153914848*y^2 - 5610833232*y + 1443605144, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 4*x^19 - 192*x^18 - 368*x^17 + 5900*x^16 + 11612*x^15 - 82376*x^14 - 147412*x^13 + 496249*x^12 + 5837552*x^11 + 28472784*x^10 + 9581508*x^9 - 257955946*x^8 - 848288280*x^7 - 488954264*x^6 + 5231676656*x^5 + 10164474572*x^4 - 6966146992*x^3 - 22153914848*x^2 - 5610833232*x + 1443605144);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 4*x^19 - 192*x^18 - 368*x^17 + 5900*x^16 + 11612*x^15 - 82376*x^14 - 147412*x^13 + 496249*x^12 + 5837552*x^11 + 28472784*x^10 + 9581508*x^9 - 257955946*x^8 - 848288280*x^7 - 488954264*x^6 + 5231676656*x^5 + 10164474572*x^4 - 6966146992*x^3 - 22153914848*x^2 - 5610833232*x + 1443605144)
 

\( x^{20} - 4 x^{19} - 192 x^{18} - 368 x^{17} + 5900 x^{16} + 11612 x^{15} - 82376 x^{14} + \cdots + 1443605144 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[10, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-4478964844204240999374053727702242866567597682327552\) \(\medspace = -\,2^{38}\cdot 17^{8}\cdot 23^{5}\cdot 881^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(382.44\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{125/48}17^{1/2}23^{1/2}881^{2/3}\approx 11049.38055118573$
Ramified primes:   \(2\), \(17\), \(23\), \(881\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-23}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{9}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{10}$, $\frac{1}{8}a^{15}-\frac{1}{8}a^{14}-\frac{1}{8}a^{11}+\frac{1}{8}a^{10}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{16}-\frac{1}{8}a^{14}-\frac{1}{8}a^{12}+\frac{1}{8}a^{10}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{17}-\frac{1}{8}a^{14}-\frac{1}{8}a^{13}+\frac{1}{8}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{24}a^{18}-\frac{1}{24}a^{16}-\frac{1}{8}a^{14}+\frac{1}{12}a^{13}-\frac{1}{8}a^{12}-\frac{1}{12}a^{10}-\frac{1}{4}a^{9}-\frac{1}{6}a^{8}-\frac{1}{6}a^{7}-\frac{1}{6}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{44\!\cdots\!28}a^{19}-\frac{43\!\cdots\!39}{44\!\cdots\!28}a^{18}+\frac{14\!\cdots\!47}{44\!\cdots\!28}a^{17}+\frac{17\!\cdots\!71}{44\!\cdots\!28}a^{16}+\frac{57\!\cdots\!91}{14\!\cdots\!76}a^{15}-\frac{49\!\cdots\!47}{44\!\cdots\!28}a^{14}+\frac{62\!\cdots\!23}{44\!\cdots\!28}a^{13}+\frac{28\!\cdots\!61}{86\!\cdots\!28}a^{12}+\frac{18\!\cdots\!85}{22\!\cdots\!64}a^{11}+\frac{41\!\cdots\!77}{22\!\cdots\!64}a^{10}-\frac{24\!\cdots\!07}{22\!\cdots\!64}a^{9}-\frac{28\!\cdots\!79}{22\!\cdots\!64}a^{8}+\frac{25\!\cdots\!32}{27\!\cdots\!83}a^{7}+\frac{11\!\cdots\!01}{11\!\cdots\!32}a^{6}-\frac{32\!\cdots\!99}{11\!\cdots\!32}a^{5}+\frac{29\!\cdots\!99}{12\!\cdots\!48}a^{4}-\frac{10\!\cdots\!65}{16\!\cdots\!99}a^{3}+\frac{17\!\cdots\!83}{61\!\cdots\!74}a^{2}-\frac{19\!\cdots\!21}{55\!\cdots\!66}a-\frac{26\!\cdots\!51}{55\!\cdots\!66}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\!\cdots\!09}{74\!\cdots\!14}a^{19}-\frac{48\!\cdots\!09}{74\!\cdots\!14}a^{18}-\frac{39\!\cdots\!61}{14\!\cdots\!28}a^{17}-\frac{12\!\cdots\!31}{37\!\cdots\!07}a^{16}+\frac{41\!\cdots\!13}{49\!\cdots\!76}a^{15}+\frac{15\!\cdots\!31}{14\!\cdots\!28}a^{14}-\frac{17\!\cdots\!71}{14\!\cdots\!28}a^{13}-\frac{15\!\cdots\!84}{12\!\cdots\!69}a^{12}+\frac{11\!\cdots\!91}{14\!\cdots\!28}a^{11}+\frac{11\!\cdots\!51}{14\!\cdots\!28}a^{10}+\frac{12\!\cdots\!86}{37\!\cdots\!07}a^{9}-\frac{35\!\cdots\!85}{37\!\cdots\!07}a^{8}-\frac{12\!\cdots\!30}{37\!\cdots\!07}a^{7}-\frac{70\!\cdots\!97}{74\!\cdots\!14}a^{6}-\frac{19\!\cdots\!19}{37\!\cdots\!07}a^{5}+\frac{59\!\cdots\!53}{82\!\cdots\!46}a^{4}+\frac{34\!\cdots\!05}{37\!\cdots\!07}a^{3}-\frac{21\!\cdots\!26}{13\!\cdots\!41}a^{2}-\frac{80\!\cdots\!74}{37\!\cdots\!07}a+\frac{13\!\cdots\!06}{37\!\cdots\!07}$, $\frac{49\!\cdots\!13}{24\!\cdots\!38}a^{19}-\frac{16\!\cdots\!59}{12\!\cdots\!69}a^{18}-\frac{16\!\cdots\!75}{49\!\cdots\!76}a^{17}+\frac{30\!\cdots\!01}{49\!\cdots\!76}a^{16}+\frac{15\!\cdots\!35}{16\!\cdots\!92}a^{15}+\frac{69\!\cdots\!61}{49\!\cdots\!76}a^{14}-\frac{48\!\cdots\!65}{49\!\cdots\!76}a^{13}-\frac{82\!\cdots\!53}{82\!\cdots\!46}a^{12}+\frac{21\!\cdots\!25}{49\!\cdots\!76}a^{11}+\frac{55\!\cdots\!55}{49\!\cdots\!76}a^{10}+\frac{38\!\cdots\!87}{12\!\cdots\!69}a^{9}-\frac{13\!\cdots\!59}{49\!\cdots\!76}a^{8}-\frac{42\!\cdots\!84}{12\!\cdots\!69}a^{7}-\frac{30\!\cdots\!99}{24\!\cdots\!38}a^{6}+\frac{26\!\cdots\!77}{12\!\cdots\!69}a^{5}+\frac{49\!\cdots\!91}{82\!\cdots\!46}a^{4}+\frac{16\!\cdots\!83}{12\!\cdots\!69}a^{3}-\frac{23\!\cdots\!40}{41\!\cdots\!23}a^{2}-\frac{51\!\cdots\!42}{12\!\cdots\!69}a-\frac{23\!\cdots\!25}{12\!\cdots\!69}$, $\frac{45\!\cdots\!83}{49\!\cdots\!76}a^{19}-\frac{21\!\cdots\!23}{49\!\cdots\!76}a^{18}-\frac{85\!\cdots\!31}{49\!\cdots\!76}a^{17}-\frac{10\!\cdots\!09}{49\!\cdots\!76}a^{16}+\frac{91\!\cdots\!63}{16\!\cdots\!92}a^{15}+\frac{32\!\cdots\!03}{49\!\cdots\!76}a^{14}-\frac{39\!\cdots\!43}{49\!\cdots\!76}a^{13}-\frac{29\!\cdots\!67}{41\!\cdots\!23}a^{12}+\frac{62\!\cdots\!23}{12\!\cdots\!69}a^{11}+\frac{12\!\cdots\!19}{24\!\cdots\!38}a^{10}+\frac{56\!\cdots\!91}{24\!\cdots\!38}a^{9}-\frac{40\!\cdots\!01}{49\!\cdots\!76}a^{8}-\frac{28\!\cdots\!71}{12\!\cdots\!69}a^{7}-\frac{74\!\cdots\!88}{12\!\cdots\!69}a^{6}-\frac{36\!\cdots\!39}{12\!\cdots\!69}a^{5}+\frac{65\!\cdots\!00}{13\!\cdots\!41}a^{4}+\frac{68\!\cdots\!72}{12\!\cdots\!69}a^{3}-\frac{13\!\cdots\!24}{13\!\cdots\!41}a^{2}-\frac{14\!\cdots\!54}{12\!\cdots\!69}a+\frac{14\!\cdots\!44}{12\!\cdots\!69}$, $\frac{78\!\cdots\!43}{49\!\cdots\!76}a^{19}-\frac{60\!\cdots\!13}{49\!\cdots\!76}a^{18}-\frac{33\!\cdots\!39}{12\!\cdots\!69}a^{17}+\frac{56\!\cdots\!92}{12\!\cdots\!69}a^{16}+\frac{38\!\cdots\!65}{41\!\cdots\!23}a^{15}-\frac{38\!\cdots\!29}{24\!\cdots\!38}a^{14}-\frac{32\!\cdots\!77}{24\!\cdots\!38}a^{13}+\frac{19\!\cdots\!03}{82\!\cdots\!46}a^{12}+\frac{34\!\cdots\!81}{49\!\cdots\!76}a^{11}+\frac{32\!\cdots\!33}{49\!\cdots\!76}a^{10}+\frac{42\!\cdots\!47}{24\!\cdots\!38}a^{9}-\frac{11\!\cdots\!97}{12\!\cdots\!69}a^{8}-\frac{31\!\cdots\!01}{12\!\cdots\!69}a^{7}-\frac{44\!\cdots\!31}{24\!\cdots\!38}a^{6}+\frac{22\!\cdots\!08}{12\!\cdots\!69}a^{5}+\frac{16\!\cdots\!33}{27\!\cdots\!82}a^{4}-\frac{11\!\cdots\!41}{12\!\cdots\!69}a^{3}-\frac{26\!\cdots\!24}{13\!\cdots\!41}a^{2}+\frac{22\!\cdots\!56}{12\!\cdots\!69}a+\frac{17\!\cdots\!84}{12\!\cdots\!69}$, $\frac{69\!\cdots\!73}{27\!\cdots\!83}a^{19}-\frac{21\!\cdots\!61}{22\!\cdots\!64}a^{18}-\frac{10\!\cdots\!01}{22\!\cdots\!64}a^{17}-\frac{28\!\cdots\!13}{27\!\cdots\!83}a^{16}+\frac{10\!\cdots\!95}{73\!\cdots\!88}a^{15}+\frac{88\!\cdots\!09}{27\!\cdots\!83}a^{14}-\frac{45\!\cdots\!25}{22\!\cdots\!64}a^{13}-\frac{22\!\cdots\!08}{54\!\cdots\!33}a^{12}+\frac{26\!\cdots\!57}{22\!\cdots\!64}a^{11}+\frac{33\!\cdots\!33}{22\!\cdots\!64}a^{10}+\frac{82\!\cdots\!19}{11\!\cdots\!32}a^{9}+\frac{20\!\cdots\!61}{55\!\cdots\!66}a^{8}-\frac{71\!\cdots\!03}{11\!\cdots\!32}a^{7}-\frac{12\!\cdots\!75}{55\!\cdots\!66}a^{6}-\frac{88\!\cdots\!37}{55\!\cdots\!66}a^{5}+\frac{26\!\cdots\!65}{20\!\cdots\!58}a^{4}+\frac{45\!\cdots\!89}{16\!\cdots\!99}a^{3}-\frac{81\!\cdots\!27}{61\!\cdots\!74}a^{2}-\frac{16\!\cdots\!13}{27\!\cdots\!83}a-\frac{64\!\cdots\!50}{27\!\cdots\!83}$, $\frac{18\!\cdots\!11}{22\!\cdots\!64}a^{19}-\frac{12\!\cdots\!13}{22\!\cdots\!64}a^{18}-\frac{15\!\cdots\!59}{11\!\cdots\!32}a^{17}+\frac{28\!\cdots\!84}{27\!\cdots\!83}a^{16}+\frac{33\!\cdots\!05}{73\!\cdots\!88}a^{15}-\frac{73\!\cdots\!27}{22\!\cdots\!64}a^{14}-\frac{31\!\cdots\!75}{55\!\cdots\!66}a^{13}+\frac{39\!\cdots\!47}{10\!\cdots\!66}a^{12}+\frac{75\!\cdots\!40}{27\!\cdots\!83}a^{11}+\frac{23\!\cdots\!29}{55\!\cdots\!66}a^{10}+\frac{13\!\cdots\!03}{11\!\cdots\!32}a^{9}-\frac{13\!\cdots\!47}{55\!\cdots\!66}a^{8}-\frac{15\!\cdots\!69}{11\!\cdots\!32}a^{7}-\frac{18\!\cdots\!73}{55\!\cdots\!66}a^{6}+\frac{12\!\cdots\!78}{27\!\cdots\!83}a^{5}+\frac{89\!\cdots\!40}{30\!\cdots\!87}a^{4}+\frac{18\!\cdots\!11}{32\!\cdots\!98}a^{3}-\frac{16\!\cdots\!70}{30\!\cdots\!87}a^{2}-\frac{81\!\cdots\!59}{27\!\cdots\!83}a-\frac{57\!\cdots\!17}{27\!\cdots\!83}$, $\frac{42\!\cdots\!81}{11\!\cdots\!32}a^{19}-\frac{19\!\cdots\!59}{11\!\cdots\!32}a^{18}-\frac{20\!\cdots\!32}{27\!\cdots\!83}a^{17}-\frac{12\!\cdots\!23}{11\!\cdots\!32}a^{16}+\frac{85\!\cdots\!61}{36\!\cdots\!44}a^{15}+\frac{37\!\cdots\!33}{11\!\cdots\!32}a^{14}-\frac{36\!\cdots\!85}{11\!\cdots\!32}a^{13}-\frac{22\!\cdots\!54}{54\!\cdots\!33}a^{12}+\frac{23\!\cdots\!03}{11\!\cdots\!32}a^{11}+\frac{59\!\cdots\!23}{27\!\cdots\!83}a^{10}+\frac{11\!\cdots\!93}{11\!\cdots\!32}a^{9}-\frac{70\!\cdots\!43}{11\!\cdots\!32}a^{8}-\frac{10\!\cdots\!51}{11\!\cdots\!32}a^{7}-\frac{15\!\cdots\!23}{55\!\cdots\!66}a^{6}-\frac{35\!\cdots\!59}{55\!\cdots\!66}a^{5}+\frac{41\!\cdots\!25}{20\!\cdots\!58}a^{4}+\frac{94\!\cdots\!35}{32\!\cdots\!98}a^{3}-\frac{12\!\cdots\!22}{30\!\cdots\!87}a^{2}-\frac{17\!\cdots\!69}{27\!\cdots\!83}a+\frac{30\!\cdots\!79}{27\!\cdots\!83}$, $\frac{44\!\cdots\!05}{22\!\cdots\!64}a^{19}-\frac{18\!\cdots\!15}{22\!\cdots\!64}a^{18}-\frac{86\!\cdots\!93}{22\!\cdots\!64}a^{17}-\frac{76\!\cdots\!57}{11\!\cdots\!32}a^{16}+\frac{91\!\cdots\!79}{73\!\cdots\!88}a^{15}+\frac{11\!\cdots\!71}{55\!\cdots\!66}a^{14}-\frac{40\!\cdots\!83}{22\!\cdots\!64}a^{13}-\frac{14\!\cdots\!91}{54\!\cdots\!33}a^{12}+\frac{13\!\cdots\!51}{11\!\cdots\!32}a^{11}+\frac{25\!\cdots\!75}{22\!\cdots\!64}a^{10}+\frac{30\!\cdots\!77}{55\!\cdots\!66}a^{9}+\frac{21\!\cdots\!63}{11\!\cdots\!32}a^{8}-\frac{15\!\cdots\!50}{27\!\cdots\!83}a^{7}-\frac{87\!\cdots\!85}{55\!\cdots\!66}a^{6}-\frac{26\!\cdots\!39}{55\!\cdots\!66}a^{5}+\frac{34\!\cdots\!08}{30\!\cdots\!87}a^{4}+\frac{28\!\cdots\!20}{16\!\cdots\!99}a^{3}-\frac{47\!\cdots\!79}{20\!\cdots\!58}a^{2}-\frac{10\!\cdots\!68}{27\!\cdots\!83}a+\frac{18\!\cdots\!02}{27\!\cdots\!83}$, $\frac{28\!\cdots\!47}{44\!\cdots\!28}a^{19}-\frac{20\!\cdots\!35}{44\!\cdots\!28}a^{18}-\frac{48\!\cdots\!65}{44\!\cdots\!28}a^{17}+\frac{32\!\cdots\!37}{44\!\cdots\!28}a^{16}+\frac{47\!\cdots\!35}{14\!\cdots\!76}a^{15}-\frac{91\!\cdots\!17}{44\!\cdots\!28}a^{14}-\frac{13\!\cdots\!41}{44\!\cdots\!28}a^{13}+\frac{31\!\cdots\!31}{86\!\cdots\!28}a^{12}-\frac{53\!\cdots\!33}{11\!\cdots\!32}a^{11}+\frac{10\!\cdots\!55}{27\!\cdots\!83}a^{10}+\frac{28\!\cdots\!01}{22\!\cdots\!64}a^{9}-\frac{42\!\cdots\!75}{22\!\cdots\!64}a^{8}-\frac{15\!\cdots\!51}{11\!\cdots\!32}a^{7}-\frac{35\!\cdots\!69}{11\!\cdots\!32}a^{6}+\frac{56\!\cdots\!77}{11\!\cdots\!32}a^{5}+\frac{32\!\cdots\!45}{12\!\cdots\!48}a^{4}-\frac{24\!\cdots\!54}{16\!\cdots\!99}a^{3}-\frac{15\!\cdots\!40}{30\!\cdots\!87}a^{2}-\frac{84\!\cdots\!95}{55\!\cdots\!66}a+\frac{20\!\cdots\!07}{55\!\cdots\!66}$, $\frac{27\!\cdots\!71}{81\!\cdots\!32}a^{19}-\frac{40\!\cdots\!99}{24\!\cdots\!96}a^{18}-\frac{50\!\cdots\!13}{81\!\cdots\!32}a^{17}-\frac{22\!\cdots\!42}{30\!\cdots\!87}a^{16}+\frac{15\!\cdots\!27}{81\!\cdots\!32}a^{15}+\frac{39\!\cdots\!21}{20\!\cdots\!58}a^{14}-\frac{62\!\cdots\!29}{24\!\cdots\!96}a^{13}-\frac{11\!\cdots\!46}{60\!\cdots\!37}a^{12}+\frac{13\!\cdots\!12}{10\!\cdots\!29}a^{11}+\frac{42\!\cdots\!51}{24\!\cdots\!96}a^{10}+\frac{16\!\cdots\!93}{20\!\cdots\!58}a^{9}-\frac{75\!\cdots\!61}{61\!\cdots\!74}a^{8}-\frac{79\!\cdots\!07}{12\!\cdots\!48}a^{7}-\frac{12\!\cdots\!61}{61\!\cdots\!74}a^{6}-\frac{21\!\cdots\!23}{20\!\cdots\!58}a^{5}+\frac{39\!\cdots\!85}{30\!\cdots\!87}a^{4}+\frac{54\!\cdots\!73}{36\!\cdots\!22}a^{3}-\frac{98\!\cdots\!81}{61\!\cdots\!74}a^{2}-\frac{22\!\cdots\!60}{30\!\cdots\!87}a+\frac{44\!\cdots\!95}{30\!\cdots\!87}$, $\frac{93\!\cdots\!09}{22\!\cdots\!64}a^{19}-\frac{21\!\cdots\!21}{22\!\cdots\!64}a^{18}-\frac{18\!\cdots\!53}{22\!\cdots\!64}a^{17}-\frac{82\!\cdots\!33}{27\!\cdots\!83}a^{16}+\frac{14\!\cdots\!53}{73\!\cdots\!88}a^{15}+\frac{91\!\cdots\!55}{11\!\cdots\!32}a^{14}-\frac{44\!\cdots\!37}{22\!\cdots\!64}a^{13}-\frac{21\!\cdots\!79}{21\!\cdots\!32}a^{12}+\frac{44\!\cdots\!85}{11\!\cdots\!32}a^{11}+\frac{56\!\cdots\!79}{22\!\cdots\!64}a^{10}+\frac{18\!\cdots\!41}{11\!\cdots\!32}a^{9}+\frac{35\!\cdots\!49}{11\!\cdots\!32}a^{8}-\frac{57\!\cdots\!35}{11\!\cdots\!32}a^{7}-\frac{12\!\cdots\!05}{27\!\cdots\!83}a^{6}-\frac{54\!\cdots\!25}{55\!\cdots\!66}a^{5}+\frac{15\!\cdots\!52}{30\!\cdots\!87}a^{4}+\frac{16\!\cdots\!31}{32\!\cdots\!98}a^{3}+\frac{36\!\cdots\!99}{61\!\cdots\!74}a^{2}+\frac{30\!\cdots\!53}{27\!\cdots\!83}a-\frac{93\!\cdots\!02}{27\!\cdots\!83}$, $\frac{94\!\cdots\!61}{11\!\cdots\!32}a^{19}-\frac{11\!\cdots\!97}{22\!\cdots\!64}a^{18}-\frac{17\!\cdots\!21}{11\!\cdots\!32}a^{17}-\frac{62\!\cdots\!89}{22\!\cdots\!64}a^{16}+\frac{38\!\cdots\!35}{73\!\cdots\!88}a^{15}+\frac{17\!\cdots\!42}{27\!\cdots\!83}a^{14}-\frac{20\!\cdots\!94}{27\!\cdots\!83}a^{13}+\frac{16\!\cdots\!65}{43\!\cdots\!64}a^{12}+\frac{95\!\cdots\!99}{22\!\cdots\!64}a^{11}+\frac{93\!\cdots\!73}{22\!\cdots\!64}a^{10}+\frac{18\!\cdots\!49}{11\!\cdots\!32}a^{9}-\frac{26\!\cdots\!77}{11\!\cdots\!32}a^{8}-\frac{20\!\cdots\!59}{11\!\cdots\!32}a^{7}-\frac{22\!\cdots\!99}{55\!\cdots\!66}a^{6}+\frac{92\!\cdots\!16}{27\!\cdots\!83}a^{5}+\frac{12\!\cdots\!40}{30\!\cdots\!87}a^{4}+\frac{27\!\cdots\!94}{16\!\cdots\!99}a^{3}-\frac{19\!\cdots\!47}{20\!\cdots\!58}a^{2}-\frac{89\!\cdots\!86}{27\!\cdots\!83}a+\frac{19\!\cdots\!03}{27\!\cdots\!83}$, $\frac{29\!\cdots\!25}{44\!\cdots\!28}a^{19}-\frac{52\!\cdots\!45}{44\!\cdots\!28}a^{18}-\frac{58\!\cdots\!01}{44\!\cdots\!28}a^{17}-\frac{24\!\cdots\!09}{44\!\cdots\!28}a^{16}+\frac{41\!\cdots\!11}{14\!\cdots\!76}a^{15}+\frac{63\!\cdots\!97}{44\!\cdots\!28}a^{14}-\frac{10\!\cdots\!13}{44\!\cdots\!28}a^{13}-\frac{13\!\cdots\!71}{86\!\cdots\!28}a^{12}-\frac{41\!\cdots\!33}{22\!\cdots\!64}a^{11}+\frac{21\!\cdots\!01}{55\!\cdots\!66}a^{10}+\frac{61\!\cdots\!33}{22\!\cdots\!64}a^{9}+\frac{15\!\cdots\!89}{22\!\cdots\!64}a^{8}-\frac{15\!\cdots\!77}{55\!\cdots\!66}a^{7}-\frac{74\!\cdots\!87}{11\!\cdots\!32}a^{6}-\frac{21\!\cdots\!51}{11\!\cdots\!32}a^{5}-\frac{38\!\cdots\!13}{40\!\cdots\!16}a^{4}+\frac{79\!\cdots\!01}{16\!\cdots\!99}a^{3}+\frac{21\!\cdots\!68}{30\!\cdots\!87}a^{2}+\frac{79\!\cdots\!97}{55\!\cdots\!66}a-\frac{23\!\cdots\!75}{55\!\cdots\!66}$, $\frac{71\!\cdots\!17}{22\!\cdots\!64}a^{19}-\frac{27\!\cdots\!93}{22\!\cdots\!64}a^{18}-\frac{13\!\cdots\!21}{22\!\cdots\!64}a^{17}-\frac{71\!\cdots\!05}{55\!\cdots\!66}a^{16}+\frac{13\!\cdots\!63}{73\!\cdots\!88}a^{15}+\frac{22\!\cdots\!89}{55\!\cdots\!66}a^{14}-\frac{57\!\cdots\!13}{22\!\cdots\!64}a^{13}-\frac{56\!\cdots\!21}{10\!\cdots\!66}a^{12}+\frac{42\!\cdots\!03}{27\!\cdots\!83}a^{11}+\frac{42\!\cdots\!85}{22\!\cdots\!64}a^{10}+\frac{10\!\cdots\!73}{11\!\cdots\!32}a^{9}+\frac{12\!\cdots\!60}{27\!\cdots\!83}a^{8}-\frac{91\!\cdots\!23}{11\!\cdots\!32}a^{7}-\frac{15\!\cdots\!41}{55\!\cdots\!66}a^{6}-\frac{11\!\cdots\!23}{55\!\cdots\!66}a^{5}+\frac{51\!\cdots\!89}{30\!\cdots\!87}a^{4}+\frac{11\!\cdots\!87}{32\!\cdots\!98}a^{3}-\frac{10\!\cdots\!33}{61\!\cdots\!74}a^{2}-\frac{20\!\cdots\!05}{27\!\cdots\!83}a-\frac{82\!\cdots\!77}{27\!\cdots\!83}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 12096615465700000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{5}\cdot 12096615465700000000 \cdot 1}{2\cdot\sqrt{4478964844204240999374053727702242866567597682327552}}\cr\approx \mathstrut & 0.906242345172334 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 - 192*x^18 - 368*x^17 + 5900*x^16 + 11612*x^15 - 82376*x^14 - 147412*x^13 + 496249*x^12 + 5837552*x^11 + 28472784*x^10 + 9581508*x^9 - 257955946*x^8 - 848288280*x^7 - 488954264*x^6 + 5231676656*x^5 + 10164474572*x^4 - 6966146992*x^3 - 22153914848*x^2 - 5610833232*x + 1443605144)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 4*x^19 - 192*x^18 - 368*x^17 + 5900*x^16 + 11612*x^15 - 82376*x^14 - 147412*x^13 + 496249*x^12 + 5837552*x^11 + 28472784*x^10 + 9581508*x^9 - 257955946*x^8 - 848288280*x^7 - 488954264*x^6 + 5231676656*x^5 + 10164474572*x^4 - 6966146992*x^3 - 22153914848*x^2 - 5610833232*x + 1443605144, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 4*x^19 - 192*x^18 - 368*x^17 + 5900*x^16 + 11612*x^15 - 82376*x^14 - 147412*x^13 + 496249*x^12 + 5837552*x^11 + 28472784*x^10 + 9581508*x^9 - 257955946*x^8 - 848288280*x^7 - 488954264*x^6 + 5231676656*x^5 + 10164474572*x^4 - 6966146992*x^3 - 22153914848*x^2 - 5610833232*x + 1443605144);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 4*x^19 - 192*x^18 - 368*x^17 + 5900*x^16 + 11612*x^15 - 82376*x^14 - 147412*x^13 + 496249*x^12 + 5837552*x^11 + 28472784*x^10 + 9581508*x^9 - 257955946*x^8 - 848288280*x^7 - 488954264*x^6 + 5231676656*x^5 + 10164474572*x^4 - 6966146992*x^3 - 22153914848*x^2 - 5610833232*x + 1443605144);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^8.(S_3\times A_5)$ (as 20T754):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 92160
The 39 conjugacy class representatives for $C_2^8.(S_3\times A_5)$
Character table for $C_2^8.(S_3\times A_5)$

Intermediate fields

5.5.3104644.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.5.0.1}{5} }^{2}$ ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }^{2}$ ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.5.0.1}{5} }^{2}$ $15{,}\,{\href{/padicField/13.5.0.1}{5} }$ R ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}$ R ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.4.0.1}{4} }^{5}$ $15{,}\,{\href{/padicField/41.5.0.1}{5} }$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.5.0.1}{5} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.12.16$x^{8} + 8 x^{7} + 32 x^{6} + 78 x^{5} + 137 x^{4} + 186 x^{3} + 128 x^{2} - 10 x + 7$$4$$2$$12$$A_4\times C_2$$[2, 2]^{6}$
2.12.26.29$x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{3} + 2$$12$$1$$26$12T128$[8/3, 8/3, 8/3, 8/3]_{3}^{6}$
\(17\) Copy content Toggle raw display 17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.0.1$x^{4} + 7 x^{2} + 10 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
17.12.6.2$x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
\(23\) Copy content Toggle raw display 23.5.0.1$x^{5} + 3 x + 18$$1$$5$$0$$C_5$$[\ ]^{5}$
23.5.0.1$x^{5} + 3 x + 18$$1$$5$$0$$C_5$$[\ ]^{5}$
23.10.5.2$x^{10} + 115 x^{8} + 5296 x^{6} + 36 x^{5} + 120980 x^{4} - 8280 x^{3} + 1383344 x^{2} + 95328 x + 6509876$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(881\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $3$$3$$1$$2$
Deg $3$$3$$1$$2$
Deg $6$$3$$2$$4$