Normalized defining polynomial
\( x^{12} + 595x^{10} + 131495x^{8} + 13756400x^{6} + 716192575x^{4} + 17393248250x^{2} + 147842610125 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(54546126508237448000000000\) \(\medspace = 2^{12}\cdot 5^{9}\cdot 7^{10}\cdot 17^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(139.55\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 5^{3/4}7^{5/6}17^{1/2}\approx 139.5501559905739$ | ||
Ramified primes: | \(2\), \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(2380=2^{2}\cdot 5\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{2380}(1,·)$, $\chi_{2380}(2243,·)$, $\chi_{2380}(747,·)$, $\chi_{2380}(1089,·)$, $\chi_{2380}(681,·)$, $\chi_{2380}(1767,·)$, $\chi_{2380}(1903,·)$, $\chi_{2380}(1427,·)$, $\chi_{2380}(1429,·)$, $\chi_{2380}(2041,·)$, $\chi_{2380}(2109,·)$, $\chi_{2380}(1223,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.28322000.3$^{2}$, 12.0.54546126508237448000000000.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{17}a^{2}$, $\frac{1}{17}a^{3}$, $\frac{1}{1445}a^{4}$, $\frac{1}{1445}a^{5}$, $\frac{1}{171955}a^{6}$, $\frac{1}{171955}a^{7}$, $\frac{1}{14616175}a^{8}$, $\frac{1}{14616175}a^{9}$, $\frac{1}{248474975}a^{10}$, $\frac{1}{248474975}a^{11}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}\times C_{201994}$, which has order $807976$ (assuming GRH)
Relative class number: $807976$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2}{248474975}a^{10}+\frac{13}{2923235}a^{8}+\frac{149}{171955}a^{6}+\frac{21}{289}a^{4}+\frac{43}{17}a^{2}+28$, $\frac{2}{248474975}a^{10}+\frac{62}{14616175}a^{8}+\frac{19}{24565}a^{6}+\frac{86}{1445}a^{4}+\frac{32}{17}a^{2}+19$, $\frac{1}{248474975}a^{10}+\frac{33}{14616175}a^{8}+\frac{11}{24565}a^{6}+\frac{11}{289}a^{4}+\frac{22}{17}a^{2}+12$, $\frac{3}{248474975}a^{10}+\frac{14}{2088025}a^{8}+\frac{226}{171955}a^{6}+\frac{32}{289}a^{4}+\frac{65}{17}a^{2}+39$, $\frac{3}{14616175}a^{8}+\frac{16}{171955}a^{6}+\frac{19}{1445}a^{4}+\frac{11}{17}a^{2}+9$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 104.882003477 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 104.882003477 \cdot 807976}{2\cdot\sqrt{54546126508237448000000000}}\cr\approx \mathstrut & 0.352993486898 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.28322000.3, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.1.0.1}{1} }^{12}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.1.0.1}{1} }^{12}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
\(5\) | 5.12.9.2 | $x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(7\) | 7.12.10.5 | $x^{12} - 154 x^{6} - 1421$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
\(17\) | 17.12.6.2 | $x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |