Properties

Label 24.0.177...625.3
Degree $24$
Signature $[0, 12]$
Discriminant $1.773\times 10^{44}$
Root discriminant \(69.78\)
Ramified primes $5,7,17$
Class number not computed
Class group not computed
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - x^23 - 20*x^22 + 20*x^21 + 320*x^20 - 219*x^19 - 4901*x^18 + 14901*x^17 + 60299*x^16 - 248180*x^15 - 836019*x^14 + 3276519*x^13 + 13401461*x^12 - 39585781*x^11 - 30241579*x^10 + 249183880*x^9 - 136356881*x^8 - 463267559*x^7 + 1148300059*x^6 - 13723758699*x^5 + 13110121180*x^4 + 71729555620*x^3 - 174821473680*x^2 - 220712110521*x + 1061520150601)
 
gp: K = bnfinit(y^24 - y^23 - 20*y^22 + 20*y^21 + 320*y^20 - 219*y^19 - 4901*y^18 + 14901*y^17 + 60299*y^16 - 248180*y^15 - 836019*y^14 + 3276519*y^13 + 13401461*y^12 - 39585781*y^11 - 30241579*y^10 + 249183880*y^9 - 136356881*y^8 - 463267559*y^7 + 1148300059*y^6 - 13723758699*y^5 + 13110121180*y^4 + 71729555620*y^3 - 174821473680*y^2 - 220712110521*y + 1061520150601, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - x^23 - 20*x^22 + 20*x^21 + 320*x^20 - 219*x^19 - 4901*x^18 + 14901*x^17 + 60299*x^16 - 248180*x^15 - 836019*x^14 + 3276519*x^13 + 13401461*x^12 - 39585781*x^11 - 30241579*x^10 + 249183880*x^9 - 136356881*x^8 - 463267559*x^7 + 1148300059*x^6 - 13723758699*x^5 + 13110121180*x^4 + 71729555620*x^3 - 174821473680*x^2 - 220712110521*x + 1061520150601);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^24 - x^23 - 20*x^22 + 20*x^21 + 320*x^20 - 219*x^19 - 4901*x^18 + 14901*x^17 + 60299*x^16 - 248180*x^15 - 836019*x^14 + 3276519*x^13 + 13401461*x^12 - 39585781*x^11 - 30241579*x^10 + 249183880*x^9 - 136356881*x^8 - 463267559*x^7 + 1148300059*x^6 - 13723758699*x^5 + 13110121180*x^4 + 71729555620*x^3 - 174821473680*x^2 - 220712110521*x + 1061520150601)
 

\( x^{24} - x^{23} - 20 x^{22} + 20 x^{21} + 320 x^{20} - 219 x^{19} - 4901 x^{18} + 14901 x^{17} + \cdots + 1061520150601 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(177340502563276529989135238501590728759765625\) \(\medspace = 5^{18}\cdot 7^{20}\cdot 17^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(69.78\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}7^{5/6}17^{1/2}\approx 69.77507799528695$
Ramified primes:   \(5\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $24$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(595=5\cdot 7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{595}(256,·)$, $\chi_{595}(1,·)$, $\chi_{595}(67,·)$, $\chi_{595}(324,·)$, $\chi_{595}(69,·)$, $\chi_{595}(577,·)$, $\chi_{595}(458,·)$, $\chi_{595}(579,·)$, $\chi_{595}(341,·)$, $\chi_{595}(86,·)$, $\chi_{595}(407,·)$, $\chi_{595}(152,·)$, $\chi_{595}(409,·)$, $\chi_{595}(543,·)$, $\chi_{595}(288,·)$, $\chi_{595}(33,·)$, $\chi_{595}(426,·)$, $\chi_{595}(171,·)$, $\chi_{595}(492,·)$, $\chi_{595}(237,·)$, $\chi_{595}(494,·)$, $\chi_{595}(239,·)$, $\chi_{595}(373,·)$, $\chi_{595}(118,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{29}a^{18}-\frac{5}{29}a^{17}+\frac{13}{29}a^{16}+\frac{13}{29}a^{15}+\frac{8}{29}a^{14}+\frac{9}{29}a^{13}+\frac{6}{29}a^{12}-\frac{6}{29}a^{11}+\frac{4}{29}a^{10}-\frac{14}{29}a^{9}+\frac{1}{29}a^{8}+\frac{3}{29}a^{7}+\frac{11}{29}a^{6}+\frac{14}{29}a^{5}-\frac{4}{29}a^{4}-\frac{8}{29}a^{3}-\frac{8}{29}a^{2}+\frac{6}{29}a+\frac{9}{29}$, $\frac{1}{57\!\cdots\!49}a^{19}+\frac{51\!\cdots\!74}{57\!\cdots\!49}a^{18}-\frac{13\!\cdots\!84}{57\!\cdots\!49}a^{17}+\frac{29\!\cdots\!09}{57\!\cdots\!49}a^{16}-\frac{13\!\cdots\!45}{57\!\cdots\!49}a^{15}+\frac{15\!\cdots\!99}{57\!\cdots\!49}a^{14}-\frac{15\!\cdots\!31}{57\!\cdots\!49}a^{13}-\frac{13\!\cdots\!94}{57\!\cdots\!49}a^{12}+\frac{26\!\cdots\!65}{57\!\cdots\!49}a^{11}+\frac{27\!\cdots\!27}{57\!\cdots\!49}a^{10}+\frac{17\!\cdots\!35}{57\!\cdots\!49}a^{9}-\frac{20\!\cdots\!69}{57\!\cdots\!49}a^{8}+\frac{14\!\cdots\!89}{57\!\cdots\!49}a^{7}+\frac{17\!\cdots\!01}{57\!\cdots\!49}a^{6}+\frac{24\!\cdots\!78}{57\!\cdots\!49}a^{5}-\frac{26\!\cdots\!62}{57\!\cdots\!49}a^{4}+\frac{34\!\cdots\!31}{57\!\cdots\!49}a^{3}-\frac{69\!\cdots\!43}{19\!\cdots\!81}a^{2}+\frac{20\!\cdots\!35}{57\!\cdots\!49}a-\frac{34\!\cdots\!85}{57\!\cdots\!49}$, $\frac{1}{58\!\cdots\!49}a^{20}-\frac{1}{58\!\cdots\!49}a^{19}+\frac{36\!\cdots\!24}{58\!\cdots\!49}a^{18}-\frac{58\!\cdots\!17}{20\!\cdots\!81}a^{17}-\frac{58\!\cdots\!91}{58\!\cdots\!49}a^{16}-\frac{24\!\cdots\!08}{58\!\cdots\!49}a^{15}-\frac{28\!\cdots\!99}{58\!\cdots\!49}a^{14}+\frac{24\!\cdots\!48}{58\!\cdots\!49}a^{13}-\frac{70\!\cdots\!39}{20\!\cdots\!81}a^{12}-\frac{10\!\cdots\!95}{14\!\cdots\!89}a^{11}-\frac{22\!\cdots\!98}{58\!\cdots\!49}a^{10}-\frac{74\!\cdots\!36}{58\!\cdots\!49}a^{9}+\frac{83\!\cdots\!15}{58\!\cdots\!49}a^{8}+\frac{84\!\cdots\!12}{58\!\cdots\!49}a^{7}-\frac{12\!\cdots\!46}{58\!\cdots\!49}a^{6}+\frac{60\!\cdots\!72}{58\!\cdots\!49}a^{5}+\frac{25\!\cdots\!18}{58\!\cdots\!49}a^{4}-\frac{19\!\cdots\!49}{58\!\cdots\!49}a^{3}-\frac{26\!\cdots\!34}{58\!\cdots\!49}a^{2}-\frac{27\!\cdots\!99}{57\!\cdots\!49}a+\frac{94\!\cdots\!96}{57\!\cdots\!49}$, $\frac{1}{59\!\cdots\!49}a^{21}-\frac{1}{59\!\cdots\!49}a^{20}-\frac{20}{59\!\cdots\!49}a^{19}+\frac{11\!\cdots\!12}{59\!\cdots\!49}a^{18}-\frac{14\!\cdots\!70}{59\!\cdots\!49}a^{17}+\frac{12\!\cdots\!39}{59\!\cdots\!49}a^{16}-\frac{44\!\cdots\!46}{59\!\cdots\!49}a^{15}-\frac{22\!\cdots\!89}{59\!\cdots\!49}a^{14}-\frac{28\!\cdots\!21}{59\!\cdots\!49}a^{13}+\frac{25\!\cdots\!56}{59\!\cdots\!49}a^{12}+\frac{17\!\cdots\!89}{59\!\cdots\!49}a^{11}+\frac{31\!\cdots\!74}{59\!\cdots\!49}a^{10}-\frac{16\!\cdots\!15}{59\!\cdots\!49}a^{9}+\frac{26\!\cdots\!84}{59\!\cdots\!49}a^{8}+\frac{25\!\cdots\!07}{59\!\cdots\!49}a^{7}+\frac{23\!\cdots\!60}{59\!\cdots\!49}a^{6}+\frac{38\!\cdots\!03}{59\!\cdots\!49}a^{5}-\frac{24\!\cdots\!83}{59\!\cdots\!49}a^{4}-\frac{94\!\cdots\!79}{59\!\cdots\!49}a^{3}-\frac{26\!\cdots\!96}{20\!\cdots\!81}a^{2}-\frac{17\!\cdots\!11}{57\!\cdots\!49}a+\frac{15\!\cdots\!49}{57\!\cdots\!49}$, $\frac{1}{59\!\cdots\!49}a^{22}-\frac{1}{59\!\cdots\!49}a^{21}-\frac{20}{59\!\cdots\!49}a^{20}+\frac{20}{59\!\cdots\!49}a^{19}+\frac{10\!\cdots\!77}{59\!\cdots\!49}a^{18}-\frac{44\!\cdots\!05}{59\!\cdots\!49}a^{17}-\frac{17\!\cdots\!12}{59\!\cdots\!49}a^{16}-\frac{58\!\cdots\!83}{59\!\cdots\!49}a^{15}-\frac{38\!\cdots\!31}{59\!\cdots\!49}a^{14}-\frac{16\!\cdots\!53}{59\!\cdots\!49}a^{13}+\frac{29\!\cdots\!91}{59\!\cdots\!49}a^{12}+\frac{16\!\cdots\!13}{14\!\cdots\!89}a^{11}-\frac{18\!\cdots\!92}{59\!\cdots\!49}a^{10}-\frac{18\!\cdots\!94}{59\!\cdots\!49}a^{9}-\frac{15\!\cdots\!86}{59\!\cdots\!49}a^{8}-\frac{23\!\cdots\!39}{59\!\cdots\!49}a^{7}-\frac{21\!\cdots\!45}{59\!\cdots\!49}a^{6}+\frac{80\!\cdots\!59}{59\!\cdots\!49}a^{5}-\frac{88\!\cdots\!70}{59\!\cdots\!49}a^{4}+\frac{11\!\cdots\!13}{59\!\cdots\!49}a^{3}+\frac{34\!\cdots\!50}{58\!\cdots\!49}a^{2}-\frac{90\!\cdots\!92}{57\!\cdots\!49}a-\frac{79\!\cdots\!51}{57\!\cdots\!49}$, $\frac{1}{60\!\cdots\!49}a^{23}-\frac{1}{60\!\cdots\!49}a^{22}-\frac{20}{60\!\cdots\!49}a^{21}+\frac{20}{60\!\cdots\!49}a^{20}+\frac{320}{60\!\cdots\!49}a^{19}-\frac{47\!\cdots\!38}{60\!\cdots\!49}a^{18}-\frac{27\!\cdots\!04}{60\!\cdots\!49}a^{17}-\frac{68\!\cdots\!62}{14\!\cdots\!89}a^{16}+\frac{23\!\cdots\!14}{60\!\cdots\!49}a^{15}-\frac{37\!\cdots\!90}{60\!\cdots\!49}a^{14}-\frac{24\!\cdots\!19}{60\!\cdots\!49}a^{13}-\frac{26\!\cdots\!52}{60\!\cdots\!49}a^{12}-\frac{95\!\cdots\!88}{60\!\cdots\!49}a^{11}-\frac{21\!\cdots\!51}{60\!\cdots\!49}a^{10}+\frac{38\!\cdots\!50}{60\!\cdots\!49}a^{9}+\frac{25\!\cdots\!26}{60\!\cdots\!49}a^{8}-\frac{25\!\cdots\!95}{60\!\cdots\!49}a^{7}-\frac{12\!\cdots\!24}{60\!\cdots\!49}a^{6}-\frac{19\!\cdots\!83}{60\!\cdots\!49}a^{5}-\frac{89\!\cdots\!67}{59\!\cdots\!49}a^{4}+\frac{19\!\cdots\!09}{59\!\cdots\!49}a^{3}+\frac{16\!\cdots\!53}{58\!\cdots\!49}a^{2}+\frac{52\!\cdots\!76}{57\!\cdots\!49}a+\frac{27\!\cdots\!91}{57\!\cdots\!49}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: data not computed

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{74349846400}{19951503126289682510881} a^{22} + \frac{1121512435864619}{19951503126289682510881} a^{15} + \frac{370601601649420740}{486622027470480061241} a^{8} - \frac{5994729475730497208240}{19951503126289682510881} a \)  (order $14$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot R \cdot h}{14\cdot\sqrt{177340502563276529989135238501590728759765625}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - x^23 - 20*x^22 + 20*x^21 + 320*x^20 - 219*x^19 - 4901*x^18 + 14901*x^17 + 60299*x^16 - 248180*x^15 - 836019*x^14 + 3276519*x^13 + 13401461*x^12 - 39585781*x^11 - 30241579*x^10 + 249183880*x^9 - 136356881*x^8 - 463267559*x^7 + 1148300059*x^6 - 13723758699*x^5 + 13110121180*x^4 + 71729555620*x^3 - 174821473680*x^2 - 220712110521*x + 1061520150601)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - x^23 - 20*x^22 + 20*x^21 + 320*x^20 - 219*x^19 - 4901*x^18 + 14901*x^17 + 60299*x^16 - 248180*x^15 - 836019*x^14 + 3276519*x^13 + 13401461*x^12 - 39585781*x^11 - 30241579*x^10 + 249183880*x^9 - 136356881*x^8 - 463267559*x^7 + 1148300059*x^6 - 13723758699*x^5 + 13110121180*x^4 + 71729555620*x^3 - 174821473680*x^2 - 220712110521*x + 1061520150601, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - x^23 - 20*x^22 + 20*x^21 + 320*x^20 - 219*x^19 - 4901*x^18 + 14901*x^17 + 60299*x^16 - 248180*x^15 - 836019*x^14 + 3276519*x^13 + 13401461*x^12 - 39585781*x^11 - 30241579*x^10 + 249183880*x^9 - 136356881*x^8 - 463267559*x^7 + 1148300059*x^6 - 13723758699*x^5 + 13110121180*x^4 + 71729555620*x^3 - 174821473680*x^2 - 220712110521*x + 1061520150601);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - x^23 - 20*x^22 + 20*x^21 + 320*x^20 - 219*x^19 - 4901*x^18 + 14901*x^17 + 60299*x^16 - 248180*x^15 - 836019*x^14 + 3276519*x^13 + 13401461*x^12 - 39585781*x^11 - 30241579*x^10 + 249183880*x^9 - 136356881*x^8 - 463267559*x^7 + 1148300059*x^6 - 13723758699*x^5 + 13110121180*x^4 + 71729555620*x^3 - 174821473680*x^2 - 220712110521*x + 1061520150601);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{12}$ (as 24T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{5}, \sqrt{-7})\), 4.4.1770125.1, 4.0.36125.1, 6.0.2100875.1, 6.6.300125.1, \(\Q(\zeta_{7})\), 8.0.3133342515625.1, 12.0.4413675765625.1, 12.12.13316925417050158203125.1, 12.0.271773988103064453125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }^{2}$ ${\href{/padicField/3.12.0.1}{12} }^{2}$ R R ${\href{/padicField/11.6.0.1}{6} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{6}$ R ${\href{/padicField/19.6.0.1}{6} }^{4}$ ${\href{/padicField/23.12.0.1}{12} }^{2}$ ${\href{/padicField/29.1.0.1}{1} }^{24}$ ${\href{/padicField/31.6.0.1}{6} }^{4}$ ${\href{/padicField/37.12.0.1}{12} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{12}$ ${\href{/padicField/43.4.0.1}{4} }^{6}$ ${\href{/padicField/47.12.0.1}{12} }^{2}$ ${\href{/padicField/53.12.0.1}{12} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $24$$4$$6$$18$
\(7\) Copy content Toggle raw display Deg $24$$6$$4$$20$
\(17\) Copy content Toggle raw display 17.12.6.2$x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
17.12.6.2$x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$