Properties

Label 12.12.198...125.1
Degree $12$
Signature $[12, 0]$
Discriminant $1.981\times 10^{23}$
Root discriminant \(87.38\)
Ramified primes $3,5,7,17$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 202*x^10 + 74*x^9 + 15753*x^8 + 1798*x^7 - 599316*x^6 - 252696*x^5 + 11554141*x^4 + 6283413*x^3 - 104562232*x^2 - 45628823*x + 334724041)
 
gp: K = bnfinit(y^12 - y^11 - 202*y^10 + 74*y^9 + 15753*y^8 + 1798*y^7 - 599316*y^6 - 252696*y^5 + 11554141*y^4 + 6283413*y^3 - 104562232*y^2 - 45628823*y + 334724041, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - x^11 - 202*x^10 + 74*x^9 + 15753*x^8 + 1798*x^7 - 599316*x^6 - 252696*x^5 + 11554141*x^4 + 6283413*x^3 - 104562232*x^2 - 45628823*x + 334724041);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - x^11 - 202*x^10 + 74*x^9 + 15753*x^8 + 1798*x^7 - 599316*x^6 - 252696*x^5 + 11554141*x^4 + 6283413*x^3 - 104562232*x^2 - 45628823*x + 334724041)
 

\( x^{12} - x^{11} - 202 x^{10} + 74 x^{9} + 15753 x^{8} + 1798 x^{7} - 599316 x^{6} - 252696 x^{5} + \cdots + 334724041 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(198123237327133986328125\) \(\medspace = 3^{6}\cdot 5^{9}\cdot 7^{8}\cdot 17^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(87.38\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}5^{3/4}7^{2/3}17^{1/2}\approx 87.37984794739731$
Ramified primes:   \(3\), \(5\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1785=3\cdot 5\cdot 7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{1785}(256,·)$, $\chi_{1785}(1,·)$, $\chi_{1785}(1733,·)$, $\chi_{1785}(1478,·)$, $\chi_{1785}(968,·)$, $\chi_{1785}(919,·)$, $\chi_{1785}(1682,·)$, $\chi_{1785}(1684,·)$, $\chi_{1785}(1429,·)$, $\chi_{1785}(662,·)$, $\chi_{1785}(407,·)$, $\chi_{1785}(1276,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{131}a^{9}-\frac{39}{131}a^{8}+\frac{15}{131}a^{7}-\frac{62}{131}a^{6}-\frac{39}{131}a^{5}+\frac{51}{131}a^{4}-\frac{18}{131}a^{3}+\frac{10}{131}a^{2}-\frac{43}{131}a+\frac{15}{131}$, $\frac{1}{5371}a^{10}+\frac{13}{5371}a^{9}+\frac{1655}{5371}a^{8}-\frac{2295}{5371}a^{7}-\frac{1953}{5371}a^{6}+\frac{2084}{5371}a^{5}-\frac{248}{5371}a^{4}-\frac{1188}{5371}a^{3}-\frac{2667}{5371}a^{2}+\frac{6}{5371}a+\frac{35}{131}$, $\frac{1}{11\!\cdots\!61}a^{11}-\frac{73\!\cdots\!88}{11\!\cdots\!61}a^{10}+\frac{36\!\cdots\!02}{11\!\cdots\!61}a^{9}+\frac{42\!\cdots\!54}{11\!\cdots\!61}a^{8}-\frac{74\!\cdots\!05}{11\!\cdots\!61}a^{7}-\frac{18\!\cdots\!50}{11\!\cdots\!61}a^{6}+\frac{21\!\cdots\!80}{11\!\cdots\!61}a^{5}+\frac{30\!\cdots\!34}{11\!\cdots\!61}a^{4}-\frac{76\!\cdots\!76}{11\!\cdots\!61}a^{3}-\frac{20\!\cdots\!41}{11\!\cdots\!61}a^{2}+\frac{40\!\cdots\!23}{11\!\cdots\!61}a+\frac{35\!\cdots\!86}{28\!\cdots\!21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{426854156849}{28\!\cdots\!11}a^{11}-\frac{2107821774491}{28\!\cdots\!11}a^{10}-\frac{77170730135987}{28\!\cdots\!11}a^{9}+\frac{340364211813836}{28\!\cdots\!11}a^{8}+\frac{52\!\cdots\!72}{28\!\cdots\!11}a^{7}-\frac{20\!\cdots\!22}{28\!\cdots\!11}a^{6}-\frac{16\!\cdots\!09}{28\!\cdots\!11}a^{5}+\frac{57\!\cdots\!47}{28\!\cdots\!11}a^{4}+\frac{23\!\cdots\!60}{28\!\cdots\!11}a^{3}-\frac{71\!\cdots\!19}{28\!\cdots\!11}a^{2}-\frac{11\!\cdots\!90}{28\!\cdots\!11}a+\frac{75\!\cdots\!16}{69\!\cdots\!71}$, $\frac{17\!\cdots\!55}{88\!\cdots\!31}a^{11}-\frac{10\!\cdots\!91}{88\!\cdots\!31}a^{10}-\frac{29\!\cdots\!25}{88\!\cdots\!31}a^{9}+\frac{16\!\cdots\!15}{88\!\cdots\!31}a^{8}+\frac{19\!\cdots\!30}{88\!\cdots\!31}a^{7}-\frac{93\!\cdots\!80}{88\!\cdots\!31}a^{6}-\frac{57\!\cdots\!93}{88\!\cdots\!31}a^{5}+\frac{24\!\cdots\!45}{88\!\cdots\!31}a^{4}+\frac{80\!\cdots\!20}{88\!\cdots\!31}a^{3}-\frac{29\!\cdots\!30}{88\!\cdots\!31}a^{2}-\frac{40\!\cdots\!00}{88\!\cdots\!31}a+\frac{30\!\cdots\!91}{21\!\cdots\!91}$, $\frac{79\!\cdots\!20}{88\!\cdots\!31}a^{11}-\frac{46\!\cdots\!44}{88\!\cdots\!31}a^{10}-\frac{14\!\cdots\!80}{88\!\cdots\!31}a^{9}+\frac{76\!\cdots\!15}{88\!\cdots\!31}a^{8}+\frac{99\!\cdots\!00}{88\!\cdots\!31}a^{7}-\frac{46\!\cdots\!70}{88\!\cdots\!31}a^{6}-\frac{31\!\cdots\!18}{88\!\cdots\!31}a^{5}+\frac{13\!\cdots\!15}{88\!\cdots\!31}a^{4}+\frac{46\!\cdots\!70}{88\!\cdots\!31}a^{3}-\frac{16\!\cdots\!85}{88\!\cdots\!31}a^{2}-\frac{24\!\cdots\!65}{88\!\cdots\!31}a+\frac{16\!\cdots\!06}{21\!\cdots\!91}$, $\frac{67\!\cdots\!79}{11\!\cdots\!61}a^{11}-\frac{23\!\cdots\!77}{11\!\cdots\!61}a^{10}-\frac{12\!\cdots\!57}{11\!\cdots\!61}a^{9}+\frac{36\!\cdots\!71}{11\!\cdots\!61}a^{8}+\frac{80\!\cdots\!72}{11\!\cdots\!61}a^{7}-\frac{21\!\cdots\!52}{11\!\cdots\!61}a^{6}-\frac{23\!\cdots\!01}{11\!\cdots\!61}a^{5}+\frac{60\!\cdots\!32}{11\!\cdots\!61}a^{4}+\frac{31\!\cdots\!90}{11\!\cdots\!61}a^{3}-\frac{79\!\cdots\!34}{11\!\cdots\!61}a^{2}-\frac{14\!\cdots\!75}{11\!\cdots\!61}a+\frac{86\!\cdots\!30}{28\!\cdots\!21}$, $\frac{40\!\cdots\!04}{11\!\cdots\!61}a^{11}-\frac{22\!\cdots\!62}{11\!\cdots\!61}a^{10}-\frac{70\!\cdots\!12}{11\!\cdots\!61}a^{9}+\frac{35\!\cdots\!01}{11\!\cdots\!61}a^{8}+\frac{46\!\cdots\!02}{11\!\cdots\!61}a^{7}-\frac{20\!\cdots\!02}{11\!\cdots\!61}a^{6}-\frac{14\!\cdots\!42}{11\!\cdots\!61}a^{5}+\frac{55\!\cdots\!92}{11\!\cdots\!61}a^{4}+\frac{19\!\cdots\!80}{11\!\cdots\!61}a^{3}-\frac{67\!\cdots\!99}{11\!\cdots\!61}a^{2}-\frac{99\!\cdots\!90}{11\!\cdots\!61}a+\frac{69\!\cdots\!16}{28\!\cdots\!21}$, $\frac{28\!\cdots\!78}{11\!\cdots\!61}a^{11}-\frac{75\!\cdots\!72}{11\!\cdots\!61}a^{10}-\frac{51\!\cdots\!80}{11\!\cdots\!61}a^{9}+\frac{10\!\cdots\!40}{11\!\cdots\!61}a^{8}+\frac{33\!\cdots\!30}{11\!\cdots\!61}a^{7}-\frac{62\!\cdots\!24}{11\!\cdots\!61}a^{6}-\frac{99\!\cdots\!00}{11\!\cdots\!61}a^{5}+\frac{17\!\cdots\!45}{11\!\cdots\!61}a^{4}+\frac{13\!\cdots\!40}{11\!\cdots\!61}a^{3}-\frac{24\!\cdots\!39}{11\!\cdots\!61}a^{2}-\frac{59\!\cdots\!85}{11\!\cdots\!61}a+\frac{28\!\cdots\!75}{28\!\cdots\!21}$, $\frac{28\!\cdots\!21}{11\!\cdots\!61}a^{11}-\frac{14\!\cdots\!79}{11\!\cdots\!61}a^{10}-\frac{51\!\cdots\!91}{11\!\cdots\!61}a^{9}+\frac{24\!\cdots\!23}{11\!\cdots\!61}a^{8}+\frac{35\!\cdots\!96}{11\!\cdots\!61}a^{7}-\frac{14\!\cdots\!08}{11\!\cdots\!61}a^{6}-\frac{11\!\cdots\!67}{11\!\cdots\!61}a^{5}+\frac{41\!\cdots\!16}{11\!\cdots\!61}a^{4}+\frac{15\!\cdots\!50}{11\!\cdots\!61}a^{3}-\frac{51\!\cdots\!34}{11\!\cdots\!61}a^{2}-\frac{78\!\cdots\!20}{11\!\cdots\!61}a+\frac{53\!\cdots\!46}{28\!\cdots\!21}$, $\frac{41\!\cdots\!21}{11\!\cdots\!61}a^{11}-\frac{28\!\cdots\!67}{11\!\cdots\!61}a^{10}-\frac{69\!\cdots\!43}{11\!\cdots\!61}a^{9}+\frac{44\!\cdots\!60}{11\!\cdots\!61}a^{8}+\frac{43\!\cdots\!45}{11\!\cdots\!61}a^{7}-\frac{25\!\cdots\!57}{11\!\cdots\!61}a^{6}-\frac{12\!\cdots\!20}{11\!\cdots\!61}a^{5}+\frac{69\!\cdots\!75}{11\!\cdots\!61}a^{4}+\frac{16\!\cdots\!94}{11\!\cdots\!61}a^{3}-\frac{84\!\cdots\!46}{11\!\cdots\!61}a^{2}-\frac{79\!\cdots\!13}{11\!\cdots\!61}a+\frac{91\!\cdots\!99}{28\!\cdots\!21}$, $\frac{14\!\cdots\!36}{11\!\cdots\!61}a^{11}-\frac{10\!\cdots\!63}{11\!\cdots\!61}a^{10}-\frac{23\!\cdots\!17}{11\!\cdots\!61}a^{9}+\frac{15\!\cdots\!82}{11\!\cdots\!61}a^{8}+\frac{14\!\cdots\!21}{11\!\cdots\!61}a^{7}-\frac{82\!\cdots\!26}{11\!\cdots\!61}a^{6}-\frac{39\!\cdots\!78}{11\!\cdots\!61}a^{5}+\frac{19\!\cdots\!22}{11\!\cdots\!61}a^{4}+\frac{50\!\cdots\!12}{11\!\cdots\!61}a^{3}-\frac{21\!\cdots\!39}{11\!\cdots\!61}a^{2}-\frac{24\!\cdots\!55}{11\!\cdots\!61}a+\frac{19\!\cdots\!18}{28\!\cdots\!21}$, $\frac{62\!\cdots\!24}{11\!\cdots\!61}a^{11}-\frac{43\!\cdots\!36}{11\!\cdots\!61}a^{10}-\frac{99\!\cdots\!82}{11\!\cdots\!61}a^{9}+\frac{65\!\cdots\!69}{11\!\cdots\!61}a^{8}+\frac{59\!\cdots\!38}{11\!\cdots\!61}a^{7}-\frac{36\!\cdots\!62}{11\!\cdots\!61}a^{6}-\frac{16\!\cdots\!20}{11\!\cdots\!61}a^{5}+\frac{91\!\cdots\!07}{11\!\cdots\!61}a^{4}+\frac{22\!\cdots\!47}{11\!\cdots\!61}a^{3}-\frac{10\!\cdots\!15}{11\!\cdots\!61}a^{2}-\frac{11\!\cdots\!63}{11\!\cdots\!61}a+\frac{10\!\cdots\!43}{28\!\cdots\!21}$, $\frac{48\!\cdots\!20}{11\!\cdots\!61}a^{11}-\frac{23\!\cdots\!26}{11\!\cdots\!61}a^{10}-\frac{71\!\cdots\!29}{11\!\cdots\!61}a^{9}+\frac{41\!\cdots\!01}{11\!\cdots\!61}a^{8}+\frac{58\!\cdots\!73}{11\!\cdots\!61}a^{7}-\frac{26\!\cdots\!99}{11\!\cdots\!61}a^{6}-\frac{30\!\cdots\!42}{11\!\cdots\!61}a^{5}+\frac{72\!\cdots\!41}{11\!\cdots\!61}a^{4}+\frac{73\!\cdots\!42}{11\!\cdots\!61}a^{3}-\frac{83\!\cdots\!81}{11\!\cdots\!61}a^{2}-\frac{56\!\cdots\!66}{11\!\cdots\!61}a+\frac{77\!\cdots\!76}{28\!\cdots\!21}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 18345440.8395 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 18345440.8395 \cdot 2}{2\cdot\sqrt{198123237327133986328125}}\cr\approx \mathstrut & 0.168818638097 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 202*x^10 + 74*x^9 + 15753*x^8 + 1798*x^7 - 599316*x^6 - 252696*x^5 + 11554141*x^4 + 6283413*x^3 - 104562232*x^2 - 45628823*x + 334724041)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - x^11 - 202*x^10 + 74*x^9 + 15753*x^8 + 1798*x^7 - 599316*x^6 - 252696*x^5 + 11554141*x^4 + 6283413*x^3 - 104562232*x^2 - 45628823*x + 334724041, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - x^11 - 202*x^10 + 74*x^9 + 15753*x^8 + 1798*x^7 - 599316*x^6 - 252696*x^5 + 11554141*x^4 + 6283413*x^3 - 104562232*x^2 - 45628823*x + 334724041);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - x^11 - 202*x^10 + 74*x^9 + 15753*x^8 + 1798*x^7 - 599316*x^6 - 252696*x^5 + 11554141*x^4 + 6283413*x^3 - 104562232*x^2 - 45628823*x + 334724041);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.4.325125.1, 6.6.300125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }$ R R R ${\href{/padicField/11.3.0.1}{3} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{3}$ R ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.12.0.1}{12} }$ ${\href{/padicField/41.1.0.1}{1} }^{12}$ ${\href{/padicField/43.4.0.1}{4} }^{3}$ ${\href{/padicField/47.12.0.1}{12} }$ ${\href{/padicField/53.12.0.1}{12} }$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.12.6.1$x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
\(5\) Copy content Toggle raw display 5.12.9.2$x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
\(7\) Copy content Toggle raw display 7.12.8.1$x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
\(17\) Copy content Toggle raw display 17.12.6.2$x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$