Normalized defining polynomial
\( x^{12} - x^{11} + 443 x^{10} - 444 x^{9} + 72854 x^{8} - 73298 x^{7} + 5685112 x^{6} + \cdots + 31633408171 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(9708038629029565330078125\) \(\medspace = 3^{6}\cdot 5^{9}\cdot 7^{10}\cdot 17^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(120.85\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}5^{3/4}7^{5/6}17^{1/2}\approx 120.85398018991815$ | ||
Ramified primes: | \(3\), \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1785=3\cdot 5\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1785}(256,·)$, $\chi_{1785}(1,·)$, $\chi_{1785}(1223,·)$, $\chi_{1785}(713,·)$, $\chi_{1785}(458,·)$, $\chi_{1785}(1427,·)$, $\chi_{1785}(1172,·)$, $\chi_{1785}(1429,·)$, $\chi_{1785}(919,·)$, $\chi_{1785}(152,·)$, $\chi_{1785}(1684,·)$, $\chi_{1785}(1276,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.15931125.1$^{2}$, 12.0.9708038629029565330078125.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1024846549}a^{10}+\frac{114206734}{1024846549}a^{9}-\frac{171396636}{1024846549}a^{8}+\frac{108291908}{1024846549}a^{7}+\frac{41425790}{1024846549}a^{6}+\frac{102298999}{1024846549}a^{5}-\frac{475518299}{1024846549}a^{4}-\frac{117684046}{1024846549}a^{3}+\frac{96287745}{1024846549}a^{2}-\frac{42480026}{1024846549}a+\frac{387181469}{1024846549}$, $\frac{1}{58\!\cdots\!21}a^{11}+\frac{26\!\cdots\!45}{58\!\cdots\!21}a^{10}+\frac{19\!\cdots\!78}{58\!\cdots\!21}a^{9}+\frac{10\!\cdots\!85}{58\!\cdots\!21}a^{8}+\frac{24\!\cdots\!32}{58\!\cdots\!21}a^{7}-\frac{11\!\cdots\!20}{83\!\cdots\!51}a^{6}+\frac{25\!\cdots\!55}{83\!\cdots\!51}a^{5}-\frac{27\!\cdots\!39}{58\!\cdots\!21}a^{4}-\frac{25\!\cdots\!77}{58\!\cdots\!21}a^{3}+\frac{17\!\cdots\!63}{58\!\cdots\!21}a^{2}+\frac{25\!\cdots\!48}{58\!\cdots\!21}a-\frac{38\!\cdots\!08}{18\!\cdots\!51}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}\times C_{35906}$, which has order $143624$ (assuming GRH)
Relative class number: $143624$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{16\!\cdots\!19}{57\!\cdots\!29}a^{11}-\frac{77\!\cdots\!96}{57\!\cdots\!29}a^{10}+\frac{66\!\cdots\!31}{57\!\cdots\!29}a^{9}-\frac{31\!\cdots\!66}{57\!\cdots\!29}a^{8}+\frac{99\!\cdots\!50}{57\!\cdots\!29}a^{7}-\frac{63\!\cdots\!59}{81\!\cdots\!99}a^{6}+\frac{91\!\cdots\!37}{81\!\cdots\!99}a^{5}-\frac{27\!\cdots\!00}{57\!\cdots\!29}a^{4}+\frac{19\!\cdots\!93}{57\!\cdots\!29}a^{3}-\frac{71\!\cdots\!74}{57\!\cdots\!29}a^{2}+\frac{21\!\cdots\!78}{57\!\cdots\!29}a-\frac{16\!\cdots\!52}{18\!\cdots\!99}$, $\frac{56\!\cdots\!30}{13\!\cdots\!29}a^{11}-\frac{19\!\cdots\!66}{13\!\cdots\!29}a^{10}+\frac{28\!\cdots\!50}{13\!\cdots\!29}a^{9}-\frac{75\!\cdots\!05}{13\!\cdots\!29}a^{8}+\frac{52\!\cdots\!05}{13\!\cdots\!29}a^{7}-\frac{14\!\cdots\!20}{18\!\cdots\!99}a^{6}+\frac{59\!\cdots\!15}{18\!\cdots\!99}a^{5}-\frac{55\!\cdots\!70}{13\!\cdots\!29}a^{4}+\frac{15\!\cdots\!05}{13\!\cdots\!29}a^{3}-\frac{12\!\cdots\!90}{13\!\cdots\!29}a^{2}+\frac{21\!\cdots\!65}{13\!\cdots\!29}a-\frac{32\!\cdots\!48}{41\!\cdots\!99}$, $\frac{56\!\cdots\!30}{13\!\cdots\!29}a^{11}-\frac{19\!\cdots\!66}{13\!\cdots\!29}a^{10}+\frac{28\!\cdots\!50}{13\!\cdots\!29}a^{9}-\frac{75\!\cdots\!05}{13\!\cdots\!29}a^{8}+\frac{52\!\cdots\!05}{13\!\cdots\!29}a^{7}-\frac{14\!\cdots\!20}{18\!\cdots\!99}a^{6}+\frac{59\!\cdots\!15}{18\!\cdots\!99}a^{5}-\frac{55\!\cdots\!70}{13\!\cdots\!29}a^{4}+\frac{15\!\cdots\!05}{13\!\cdots\!29}a^{3}-\frac{12\!\cdots\!90}{13\!\cdots\!29}a^{2}+\frac{21\!\cdots\!65}{13\!\cdots\!29}a-\frac{28\!\cdots\!49}{41\!\cdots\!99}$, $\frac{13\!\cdots\!61}{58\!\cdots\!21}a^{11}+\frac{81\!\cdots\!30}{58\!\cdots\!21}a^{10}+\frac{55\!\cdots\!69}{58\!\cdots\!21}a^{9}+\frac{13\!\cdots\!11}{58\!\cdots\!21}a^{8}+\frac{78\!\cdots\!05}{58\!\cdots\!21}a^{7}-\frac{21\!\cdots\!11}{83\!\cdots\!51}a^{6}+\frac{66\!\cdots\!78}{83\!\cdots\!51}a^{5}-\frac{37\!\cdots\!70}{58\!\cdots\!21}a^{4}+\frac{12\!\cdots\!12}{58\!\cdots\!21}a^{3}-\frac{14\!\cdots\!16}{58\!\cdots\!21}a^{2}+\frac{12\!\cdots\!37}{58\!\cdots\!21}a-\frac{24\!\cdots\!96}{18\!\cdots\!51}$, $\frac{31\!\cdots\!96}{58\!\cdots\!21}a^{11}-\frac{21\!\cdots\!78}{58\!\cdots\!21}a^{10}+\frac{13\!\cdots\!19}{58\!\cdots\!21}a^{9}-\frac{86\!\cdots\!69}{58\!\cdots\!21}a^{8}+\frac{19\!\cdots\!95}{58\!\cdots\!21}a^{7}-\frac{16\!\cdots\!96}{83\!\cdots\!51}a^{6}+\frac{18\!\cdots\!59}{83\!\cdots\!51}a^{5}-\frac{71\!\cdots\!80}{58\!\cdots\!21}a^{4}+\frac{38\!\cdots\!27}{58\!\cdots\!21}a^{3}-\frac{17\!\cdots\!61}{58\!\cdots\!21}a^{2}+\frac{44\!\cdots\!07}{58\!\cdots\!21}a-\frac{35\!\cdots\!79}{18\!\cdots\!51}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 104.882003477 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 104.882003477 \cdot 143624}{2\cdot\sqrt{9708038629029565330078125}}\cr\approx \mathstrut & 0.148734411436 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.15931125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.12.6.1 | $x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(5\) | 5.12.9.1 | $x^{12} - 30 x^{8} + 225 x^{4} + 1125$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(7\) | 7.12.10.5 | $x^{12} - 154 x^{6} - 1421$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
\(17\) | 17.12.6.2 | $x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |