Normalized defining polynomial
\( x^{12} - x^{11} + 443 x^{10} - 444 x^{9} + 72854 x^{8} - 73298 x^{7} + 5685112 x^{6} - 6113764 x^{5} + 223464715 x^{4} - 256778386 x^{3} + 4246142315 x^{2} - 4044668347 x + 31633408171 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9708038629029565330078125=3^{6}\cdot 5^{9}\cdot 7^{10}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1785=3\cdot 5\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1785}(256,·)$, $\chi_{1785}(1,·)$, $\chi_{1785}(1223,·)$, $\chi_{1785}(713,·)$, $\chi_{1785}(458,·)$, $\chi_{1785}(1427,·)$, $\chi_{1785}(1172,·)$, $\chi_{1785}(1429,·)$, $\chi_{1785}(919,·)$, $\chi_{1785}(152,·)$, $\chi_{1785}(1684,·)$, $\chi_{1785}(1276,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1024846549} a^{10} + \frac{114206734}{1024846549} a^{9} - \frac{171396636}{1024846549} a^{8} + \frac{108291908}{1024846549} a^{7} + \frac{41425790}{1024846549} a^{6} + \frac{102298999}{1024846549} a^{5} - \frac{475518299}{1024846549} a^{4} - \frac{117684046}{1024846549} a^{3} + \frac{96287745}{1024846549} a^{2} - \frac{42480026}{1024846549} a + \frac{387181469}{1024846549}$, $\frac{1}{589945208928960574184455194739022010221} a^{11} + \frac{263135947823757304653226592045}{589945208928960574184455194739022010221} a^{10} + \frac{194638854115484710702628655110030062178}{589945208928960574184455194739022010221} a^{9} + \frac{107028742041971317496752959457457020185}{589945208928960574184455194739022010221} a^{8} + \frac{246282536755264633244784906464111582432}{589945208928960574184455194739022010221} a^{7} - \frac{1151411631800253320097798602336171620}{8309087449703670058935988658296084651} a^{6} + \frac{2554640049685038694130548367434644855}{8309087449703670058935988658296084651} a^{5} - \frac{270942970524802128092857516202575364539}{589945208928960574184455194739022010221} a^{4} - \frac{25917515365986797778296140109137593777}{589945208928960574184455194739022010221} a^{3} + \frac{171008037141005076166014150380005653963}{589945208928960574184455194739022010221} a^{2} + \frac{253413893355046561928190069401236806748}{589945208928960574184455194739022010221} a - \frac{3835831337866137457383294008}{18649435613763369543708948551}$
Class group and class number
$C_{2}\times C_{2}\times C_{35906}$, which has order $143624$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.15931125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $17$ | 17.12.6.2 | $x^{12} - 1419857 x^{2} + 289650828$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |