Properties

Label 98.8.c
Level $98$
Weight $8$
Character orbit 98.c
Rep. character $\chi_{98}(67,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $48$
Newform subspaces $14$
Sturm bound $112$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 14 \)
Sturm bound: \(112\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(98, [\chi])\).

Total New Old
Modular forms 212 48 164
Cusp forms 180 48 132
Eisenstein series 32 0 32

Trace form

\( 48 q - 1536 q^{4} - 252 q^{5} + 1792 q^{6} - 20496 q^{9} - 1792 q^{10} + 14164 q^{11} - 24080 q^{13} - 46688 q^{15} - 98304 q^{16} - 82740 q^{17} + 48352 q^{18} - 43456 q^{19} + 32256 q^{20} - 49216 q^{22}+ \cdots - 160824728 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(98, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
98.8.c.a 98.c 7.c $2$ $30.614$ \(\Q(\sqrt{-3}) \) None 14.8.a.b \(-8\) \(-66\) \(-400\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-8\zeta_{6}q^{2}+(-66+66\zeta_{6})q^{3}+(-2^{6}+\cdots)q^{4}+\cdots\)
98.8.c.b 98.c 7.c $2$ $30.614$ \(\Q(\sqrt{-3}) \) None 14.8.a.b \(-8\) \(66\) \(400\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-8\zeta_{6}q^{2}+(66-66\zeta_{6})q^{3}+(-2^{6}+\cdots)q^{4}+\cdots\)
98.8.c.c 98.c 7.c $2$ $30.614$ \(\Q(\sqrt{-3}) \) None 14.8.a.a \(8\) \(-82\) \(448\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\zeta_{6}q^{2}+(-82+82\zeta_{6})q^{3}+(-2^{6}+\cdots)q^{4}+\cdots\)
98.8.c.d 98.c 7.c $2$ $30.614$ \(\Q(\sqrt{-3}) \) None 2.8.a.a \(8\) \(-12\) \(210\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\zeta_{6}q^{2}+(-12+12\zeta_{6})q^{3}+(-2^{6}+\cdots)q^{4}+\cdots\)
98.8.c.e 98.c 7.c $2$ $30.614$ \(\Q(\sqrt{-3}) \) None 2.8.a.a \(8\) \(12\) \(-210\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\zeta_{6}q^{2}+(12-12\zeta_{6})q^{3}+(-2^{6}+\cdots)q^{4}+\cdots\)
98.8.c.f 98.c 7.c $2$ $30.614$ \(\Q(\sqrt{-3}) \) None 14.8.a.a \(8\) \(82\) \(-448\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\zeta_{6}q^{2}+(82-82\zeta_{6})q^{3}+(-2^{6}+\cdots)q^{4}+\cdots\)
98.8.c.g 98.c 7.c $4$ $30.614$ \(\Q(\sqrt{-3}, \sqrt{1969})\) None 14.8.a.c \(-16\) \(-70\) \(-126\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\beta _{1})q^{2}+(-35\beta _{1}-\beta _{2})q^{3}+\cdots\)
98.8.c.h 98.c 7.c $4$ $30.614$ \(\Q(\sqrt{-3}, \sqrt{2389})\) None 14.8.c.a \(-16\) \(-56\) \(-238\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\beta _{1})q^{2}+(-28\beta _{1}-\beta _{2})q^{3}+\cdots\)
98.8.c.i 98.c 7.c $4$ $30.614$ \(\Q(\sqrt{-3}, \sqrt{37})\) None 98.8.a.j \(-16\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\beta _{1})q^{2}-\beta _{2}q^{3}-2^{6}\beta _{1}q^{4}+\cdots\)
98.8.c.j 98.c 7.c $4$ $30.614$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 98.8.a.i \(-16\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+8\beta _{2}q^{2}+15\beta _{1}q^{3}+(-2^{6}-2^{6}\beta _{2}+\cdots)q^{4}+\cdots\)
98.8.c.k 98.c 7.c $4$ $30.614$ \(\Q(\sqrt{-3}, \sqrt{1969})\) None 14.8.a.c \(-16\) \(70\) \(126\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8+8\beta _{1})q^{2}+(35\beta _{1}-\beta _{2})q^{3}+\cdots\)
98.8.c.l 98.c 7.c $4$ $30.614$ \(\Q(\sqrt{-3}, \sqrt{22})\) None 98.8.a.e \(16\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-8\beta _{2}q^{2}+3\beta _{1}q^{3}+(-2^{6}-2^{6}\beta _{2}+\cdots)q^{4}+\cdots\)
98.8.c.m 98.c 7.c $4$ $30.614$ \(\Q(\sqrt{-3}, \sqrt{949})\) None 14.8.c.b \(16\) \(56\) \(-14\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(8-8\beta _{1})q^{2}+(28\beta _{1}+\beta _{2})q^{3}-2^{6}\beta _{1}q^{4}+\cdots\)
98.8.c.n 98.c 7.c $8$ $30.614$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 98.8.a.l \(32\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(8+8\beta _{1})q^{2}+(\beta _{2}+2\beta _{3})q^{3}+2^{6}\beta _{1}q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(98, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(98, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)